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Preface

Calculus is one of those subjects that appears to have no boundaries, which is why
some calculus books are so large and heavy! So when I started writing this book, I
knew that it would not fall into this category: it would be around 200 pages long and
take the reader on a gentle journey through the subject, without placing too many
demands on their knowledge of mathematics.

The objective of the book is to inform the reader about functions and their deriva-
tives, and the inverse process: integration, which can be used for computing area
and volume. The emphasis on geometry gives the book relevance to the computer
graphics community, and hopefully will provide the mathematical background for
professionals working in computer animation, games and allied disciplines to read
and understand other books and technical papers where differential and integral no-
tation is found.

The book divides into 13 chapters, with the obligatory Introduction and Con-
clusion chapters. Chapter 2 reviews the ideas of functions, their notation and the
different types encountered in every-day mathematics. This can be skipped by read-
ers already familiar with the subject.

Chapter 3 introduces the idea of limits and derivatives, and how mathematicians
have adopted limits in preference to infinitesimals. Most authors introduce integra-
tion as a separate subject, but I have included it in this chapter so that it is seen as
an antiderivative, rather than something independent.

Chapter 4 looks at derivatives and antiderivatives for a wide range of functions
such as polynomial, trigonometric, exponential and logarithmic. It also shows how
function sums, products, quotients and function of a function are differentiated.

Chapter 5 covers higher derivatives and how they are used to detect a local max-
imum and minimum.

Chapter 6 covers partial derivatives, which although are easy to understand, have
a reputation for being difficult. This is possibly due to the symbols used, rather than
the underlying mathematics. The total derivative is introduced here as it is required
in a later chapter.
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viii Preface

Chapter 7 introduces the standard techniques for integrating different types of
functions. This can be a large subject, and I have deliberately kept the examples
simple in order to keep the reader interested and on top of the subject.

Chapter 8 shows how integration reveals the area under a graph and the concept
of the Riemann Sum. The idea of representing and area or a volume as the limiting
sum of some fundamental unit, is central to understanding calculus.

Chapter 9 deals with arc length, and uses a variety of worked examples to com-
pute the length of different curves.

Chapter 10 shows how single and double integrals are used to compute the sur-
face area for different objects. It is also a convenient point to introduce Jacobians,
which hopefully I have managed to explain convincingly.

Chapter 11 shows how single, double and triple integrals are used to compute
the volume of familiar objects. It also shows how the choice of a coordinate system
influences a solution’s complexity.

Finally, Chap. 12 covers vector-valued functions, and provides a short introduc-
tion to this very large subject.

The book contains over one hundred illustrations to provide a strong visual inter-
pretation for derivatives, antiderivatives and the calculation of area and volume.

There is no way I could have written this book without the internet and several
excellent books on calculus. One only has to Google “What is a Jacobian” to receive
over one million entries in about 0.25 seconds! YouTube also contains some highly
informative presentations on virtually every aspect of calculus one could want. So I
have spent many hours watching, absorbing and disseminating videos, looking for
vital pieces of information that are key to understanding a topic.

The books I have referred to include: Teach Yourself Calculus, by Hugh Neil,
Calculus of One Variable, by Keith Hirst, Inside Calculus, by George Exner, Short
Calculus, by Serge Lang, and my all time favourite: Mathematics from the Birth
of Numbers, by Jan Gullberg. I acknowledge and thank all these authors for the
influence they have had on this book. One other book that has helped me is Digital
Typography Using LATEX by Apostolos Syropoulos, Antonis Tsolomitis and Nick
Sofroniou.

I would also like to thank Professor Wordsworth Price and Professor Patrick
Riley for their valuable feedback on early versions of the manuscript. However,
I take full responsibility for any mistakes that may have found their way into this
publication.

Finally, I would like to thank Beverley Ford, Editorial Director for Computer
Science, and Helen Desmond, Editor for Computer Science, Springer UK, for their
continuing professional support.

John VinceAshtead, UK
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Chapter 1
Introduction

1.1 Calculus

More than three-hundred years have passed since Isaac Newton (1643–1727) and
Gotfried Wilhelm Leibniz (1646–1716) published their treaties describing calculus.
So called “infinitesimals” played a pivotal role in early calculus to determine tan-
gents, area and volume. Incorporating incredibly small quantities (infinitesimals)
into a numerical solution, means that products involving them can be ignored, whilst
quotients are retained. The final solution takes the form of a ratio representing the
change of a function’s value, relative to a change in its independent variable.

Although infinitesimal quantities have helped mathematicians for more than two-
thousand years solve all sorts of problems, they were not widely accepted as a rig-
orous mathematical tool. In the latter part of the 19th century, they were replaced
by incremental changes that tend towards zero to form a limit identifying some de-
sired result. This was mainly due to the work of the German mathematician Karl
Weierstrass (1815–1897), and the French mathematician Augustin Louis Cauchy
(1789–1857).

In spite of the basic ideas of calculus being relatively easy to understand, it has
a reputation for being difficult and intimidating. I believe that the problem lies in
the breadth and depth of calculus, in that it can be applied across a wide range of
disciplines, from electronics to cosmology, where the notation often becomes ex-
tremely abstract with multiple integrals, multi-dimensional vector spaces and matri-
ces formed from partial differential operators. In this book I introduce the reader to
those elements of calculus that are both easy to understand and relevant to solving
various mathematical problems found in computer graphics.

Perhaps you have studied calculus at some time, and have not had the oppor-
tunity to use it regularly and become familiar with its ways, tricks and analytical
techniques. In which case, this book could awaken some distant memory and reveal
a subject with which you were once familiar. On the other hand, this might be your
first journey into the world of functions, limits, differentials and integrals—in which
case, you should find the journey exciting!

J. Vince, Calculus for Computer Graphics, DOI 10.1007/978-1-4471-5466-2_1,
© Springer-Verlag London 2013
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Chapter 2
Functions

2.1 Introduction

In this chapter the notion of a function is introduced as a tool for generating one nu-
merical quantity from another. In particular, we look at equations, their variables and
any possible sensitive conditions. This leads toward the idea of how fast a function
changes relative to its independent variable. The second part of the chapter intro-
duces two major operations of calculus: differentiating, and its inverse, integrating.
This is performed without any rigorous mathematical underpinning, and permits the
reader to develop an understanding of calculus without using limits.

2.2 Expressions, Variables, Constants and Equations

One of the first things we learn in mathematics is the construction of expressions,
such as 2(x + 5) − 2, using variables, constants and mathematical operators. The
next step is to develop an equation, which is a mathematical statement, in symbols,
declaring that two things are exactly the same (or equivalent). For example, the
equation representing the surface area of a sphere is

S = 4πr2

where S and r are variables. They are variables because they take on different values,
depending on the size of the sphere. In this equation, S depends upon the changing
value of r , and to distinguish between the two, S is called the dependent variable,
and r the independent variable. Similarly, the equation for the volume of a torus is

V = 2π2r2R

where the dependent variable V depends on the torus’s minor radius r and major
radius R, which are both independent variables. Note that both formulae include
constants 4, π and 2. There are no restrictions on the number of variables or con-
stants employed within an equation.

J. Vince, Calculus for Computer Graphics, DOI 10.1007/978-1-4471-5466-2_2,
© Springer-Verlag London 2013
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4 2 Functions

2.3 Functions

The concept of a function is that of a dependent relationship. Some equations merely
express an equality, such as 19 = 15 + 4, but a function is a special type of equation
in which the value of one variable (the dependent variable) depends on, and is de-
termined by, the values of one or more other variables (the independent variables).
Thus, in the equation

S = 4πr2

one might say that S is a function of r , and in the equation

V = 2π2r2R

V is a function of r and also of R.
It is usual to write the independent variables, separated by commas, in brackets

immediately after the symbol for the dependent variable, and so the two equations
above are usually written

S(r) = 4πr2

and

V (r,R) = 2π2r2R.

The order of the independent variables is immaterial.
Mathematically, there is no difference between equations and functions, it is sim-

ply a question of notation. However, when we do not have an equation, we can use
the idea of a function to help us develop one. For example, no one has been able to
find an equation that generates the nth prime number, but I can declare an imaginary
function P(n) that pretends to perform this operation, such that P(1) = 2, P(2) = 3,
P(3) = 5, etc. At least this imaginary function P(n), permits me to move forward
and reflect upon its possible inner structure.

The term function has many uses outside of mathematics. For example, I know
that my health is a function of diet and exercise, and my current pension is a func-
tion of how much money I put aside each month during my working life. The first
example is difficult to quantify precisely; all that I can say is that by avoiding deep-
fried food, alcohol, processed food, sugar, salt, etc., whilst at the same time taking
regular exercise in the form of walking, running, rowing and press-ups, there is a
chance that I will live longer and avoid some nasty diseases. However, this does not
mean that I will not be knocked down by a lorry carrying organic vegetables to a
local health shop! Therefore, just to be on the safe side, I occasionally have a glass
of wine, a bacon sandwich and a packet of crisps!

The second example concerning my pension is easier to quantify. I knew that
whilst I was in full employment, my future pension would be a function of how
much I saved each month. Based on a growing nest egg, my pension provider pre-
dicted how much I would receive each month, informed by the economic health of
world stock markets. Unfortunately, they did not foresee the recent banking crisis
and the ensuing world recession!
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Although it is possible to appreciate the role of a function in the above examples,
it is impossible to describe them mathematically, as there are too many variables,
unknown factors and no meaningful units of measurement. A mathematical func-
tion, on the other hand, must have a precise definition. It must be predictable, and
ideally, work under all conditions.

We are all familiar with mathematical functions such as sinx, cosx, tanx,
√

x,
etc., where x is the independent variable. Such functions permit us to confidently
write statements such as

sin 30° = 0.5

cos 90° = 0.0

tan 45° = 1.0
√

16 = 4

without worrying whether they will provide the correct answer, or not.
We often need to design a function to perform a specific task. For instance, if I

require a function f (x) to compute x2 + x + 6, the independent variable is x and
the function is written:

f (x) = x2 + x + 6

such that

f (0) = 02 + 0 + 6 = 6

f (1) = 12 + 1 + 6 = 8

f (2) = 22 + 2 + 6 = 12

f (3) = 32 + 3 + 6 = 18.

2.3.1 Continuous and Discontinuous Functions

Understandably, a function’s value is sensitive to its independent variables. A simple
square-root function, for instance, expects a positive real number as its independent
variable, and registers an error condition for a negative value. On the other hand, a
useful square-root function would accept positive and negative numbers, and output
a real result for a positive input and a complex result for a negative input.

Another danger condition is the possibility of dividing by zero, which is not
permissible in mathematics. For example, the following function f (x) is undefined
for x = 1, and cannot be displayed on the graph shown in Fig. 2.1.

f (x) = x2 + 1

x − 1
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Fig. 2.1 Graph of
f (x) = (x2 + 1)/(x − 1)

showing the discontinuity at
x = 1

f (1) = 2

0
.

We can create equations or functions that lead to all sorts of mathematical anoma-
lies. For example, (2.1) creates the condition 0/0 when x = 4

f (x) = x − 4√
x − 2

f (4) = 0

0
.

(2.1)

Such conditions have no numerical value. However, this does not mean that these
functions are unsound—they are just sensitive to specific values of their independent
variable. Fortunately, there is a way of interpreting these results, as we will discover
in the next chapter.

2.3.2 Linear Functions

Linear functions are probably the simplest functions we will ever encounter and are
based upon equations of the form

y = mx + c.

For example, the function for y = 0.5x + 2 is written

f (x) = 0.5x + 2

and is shown as a graph in Fig. 2.2, where 0.5 is the slope, and 2 is the intercept
with the y-axis.
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Fig. 2.2 Graph of
f (x) = 0.5x + 2

Fig. 2.3 Graph of
f (x) = 5 sinx

2.3.3 Periodic Functions

Periodic functions are also relatively simple and employ the trigonometric functions
sin, cos and tan. For example, the function for y = 5 sinx is written

f (x) = 5 sinx

and is shown over the range −4π < x < 4π as a graph in Fig. 2.3, where the 5 is
the amplitude of the sine wave, and x is the angle in radians.

2.3.4 Polynomial Functions

Polynomial functions take the form

f (x) = axn + bxn−1 + cxn−2 + · · · + zx + C
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where n takes on some value, C is a constant, and a, b, c, . . . , z are assorted con-
stants. An example being

f (x) = 12x4 + 10x3 − 8x2 + 6x − 12.

2.3.5 Function of a Function

In mathematics we often combine functions to describe some relationship suc-
cinctly. For example, the trigonometric identity

sin2 θ + cos2 θ = 1

is a simple example of a function of a function. At the first level, we have the func-
tions sin θ and cos θ , which are individually subjected to a square function. We can
increase the depth of functions to any limit, and in the next chapter we consider how
such descriptions are untangled and analysed in calculus.

2.3.6 Other Functions

You are probably familiar with other functions such as exponential, logarithmic,
complex, vector, recursive, etc., which can be combined together to encode simple
equations such as

e = mc2

or something more difficult such as

A(k) = 1

N

N−1∑

j=0

fjω
−jk for k = 0,1, . . . ,N − 1.

2.4 A Function’s Rate of Change

Mathematicians are particularly interested in the rate at which a function changes
relative to its independent variable. Even I would be interested in this characteristic
in the context of the functions for my health and pension fund. For example, I would
like to know if my pension fund is growing linearly with time; whether there is some
sustained increasing growth rate; or more importantly, if the fund is decreasing! This
is what calculus is about—it enables us to calculate how a function’s value changes,
relative to its independent variable.
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Fig. 2.4 Graph of
y = mx + 2 for different
values of m

The reason why calculus appears daunting, is that there is such a wide range
of functions to consider: linear, periodic, complex, polynomial, rational, exponen-
tial, logarithmic, vector, etc. However, we must not be intimidated by such a wide
spectrum, as the majority of functions employed in computer graphics are relatively
simple, and there are plenty of texts that show how specific functions are tackled.

2.4.1 Slope of a Function

In the linear equation

y = mx + c

the independent variable is x, but y is also influenced by the constant c, which
determines the intercept with the y-axis, and m, which determines the graph’s slope.
Figure 2.4 shows this equation with 4 different values of m. For any value of x, the
slope always equals m, which is what linear means.

In the quadratic equation

y = ax2 + bx + c

y is dependent on x, but in a much more subtle way. It is a combination of two com-
ponents: a square law component ax2, and a linear component bx + c. Figure 2.5
shows these two components and their sum for the equation y = 0.5x2 − 2x + 1.

For any value of x, the slope is different. Figure 2.6 identifies three slopes on the
graph. For example, when x = 2, y = −1, and the slope is zero. When x = 4, y = 1,
and the slope looks as though it equals 2. And when x = 0, y = 1, the slope looks
as though it equals −2.

Even though we have only three samples, let’s plot the graph of the relationship
between x and the slope m, as shown in Fig. 2.7. Assuming that other values of
slope lie on the same straight line, then the equation relating the slope m to x is

m = x − 2.
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Fig. 2.5 Graph of
y = 0.5x2 − 2x + 1 showing
its two components

Fig. 2.6 Graph of
y = 0.5x2 − 2x + 1 showing
three gradients

Fig. 2.7 Linear relationship
between slope m and x

Summarising: we have discovered that the slope of the function

f (x) = 0.5x2 − 2x + 1
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changes with the independent variable x, and is given by the function

f ′(x) = x − 2.

Note that f (x) is the original function, and f ′(x) (pronounced f prime of x) is the
function for the slope, which is a convention often used in calculus.

Remember that we have taken only three sample slopes, and assumed that there
is a linear relationship between the slope and x. Ideally, we should have sampled
the graph at many more points to increase our confidence, but I happen to know that
we are on solid ground!

Calculus enables us to compute the function for the slope from the original func-
tion. i.e. to compute f ′(x) from f (x):

f (x) = 0.5x2 − 2x + 1 (2.2)

f ′(x) = x − 2. (2.3)

Readers who are already familiar with calculus will know how to compute (2.3)
from (2.2), but for other readers, this is the technique:

1. Take each term of (2.2) in turn and replace axn by naxn−1.
2. Therefore 0.5x2 becomes x.
3. −2x, which can be written −2x1, becomes −2x0, which is −2.
4. 1 is ignored, as it is a constant.
5. Collecting up the terms we have

f ′(x) = x − 2.

This process is called differentiating a function, and is easy for this type of polyno-
mial. So easy in fact, we can differentiate the following function without thinking:

f (x) = 12x4 + 6x3 − 4x2 + 3x − 8

f ′(x) = 48x3 + 18x2 − 8x + 3.

This is an amazing relationship, and is one of the reasons why calculus is so impor-
tant.

If we can differentiate a polynomial function, surely we can reverse the operation
and compute the original function? Well of course! For example, if f ′(x) is given
by

f ′(x) = 6x2 + 4x + 6 (2.4)

then this is the technique to compute the original function:

1. Take each term of (2.4) in turn and replace axn by 1
n+1axn+1.

2. Therefore 6x2 becomes 2x3.
3. 4x becomes 2x2.
4. 6 becomes 6x.
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Fig. 2.8 A sine curve over
the range 0° to 360°

5. Introduce a constant C which might have been present in the original function.
6. Collecting up the terms we have

f (x) = 2x3 + 2x2 + 6x + C.

This process is called integrating a function. Thus calculus is about differentiating
and integrating functions, which sounds rather easy, and in some cases it is true. The
problem is the breadth of functions that arise in mathematics, physics, geometry,
cosmology, science, etc. For example, how do we differentiate or integrate

f (x) = sinx + x
coshx

cos2 x − loge x3
?

Personally, I don’t know, but hopefully, there is a solution somewhere.

2.4.2 Differentiating Periodic Functions

Now let’s try differentiating the sine function by sampling its slope at different
points. Figure 2.8 shows a sine curve over the range 0° to 360°. When the scales
for the vertical and horizontal axes are equal, the slope is 1 at 0° and 360°. The
slope is zero at 90° and 270°, and equals −1 at 180°. Figure 2.9 plots these slope
values against x and connects them with straight lines.

It should be clear from Fig. 2.8 that the slope of the sine wave does not change
linearly as shown in Fig. 2.9. The slope starts at 1, and for the first 20°, or so, slowly
falls away, and then collapses to zero, as shown in Fig. 2.10, which is a cosine
wave form. Thus, we can guess that differentiating a sine function creates a cosine
function:

f (x) = sinx

f ′(x) = cosx.

Consequently, integrating a cosine function creates a sine function. Now this anal-
ysis is far from rigorous, but we will shortly provide one. Before moving on, let’s
perform a similar “guesstimate” for the cosine function.
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Fig. 2.9 Sampled slopes of a
sine curve

Fig. 2.10 The slope of a sine
curve is a cosine curve

Fig. 2.11 Sampled slopes of
a cosine curve

Figure 2.10 shows a cosine curve, where the slope is zero at 0°, 180° and 360°.
The slope equals −1 at 90°, and equals 1 at 270°. Figure 2.11 plots these slope
values against x and connects them with straight lines. Using the same argument for
the sine curve, this can be represented by f ′(x) = − sinx as shown in Fig. 2.12.
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Fig. 2.12 The slope of a
cosine curve is a negative sine
curve

Summarising: we have

f (x) = sinx

f ′(x) = cosx

f (x) = cosx

f ′(x) = − sinx

which illustrates the intimate relationship between the sine and cosine functions.
Just in case you are suspicious of these results, they can be confirmed by differ-

entiating the power series for the sine and cosine functions. For example, the sine
and cosine functions are represented by the series

sinx = x − x3

3! + x5

5! − x7

7! + · · ·

cosx = 1 − x2

2! + x4

4! − x6

6! + · · ·

and differentiating the sine function using the above technique for a polynomial we
obtain

f ′(x) = 1 − x2

2! + x4

4! − x6

6! + · · ·
which is the cosine function. Similarly, differentiating the cosine function, we obtain

f ′(x) = −
(

x − x3

3! + x5

5! − x7

7! + · · ·
)

which is the negative sine function.
Finally, there is a series that when differentiated, remains the same:

f (x) = 1 + x + x2

2! + x3

3! + x4

4! + · · ·
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f ′(x) = 1 + x + x2

2! + x3

3! + x4

4! + · · ·

which is ex , and has a rate of growth equal to itself!

2.5 Summary

We have covered quite a lot in this chapter, but hopefully it was not too challeng-
ing, bearing in mind the subject. We have covered the nature of simple functions
and noted that calculus is interested in a function’s rate of change, relative to its
independent variable. Differentiating a function creates another function that de-
scribes the function’s rate of change relative to its independent variable. For simple
polynomials, this is a trivial algebraic operation, which can even be undertaken by
software. For trigonometric functions, there is a direct relationship between the sine
and cosine functions.

Integration is the reverse process, where the original function is derived from a
knowledge of the differentiated form. Much more will be said of this process in later
chapters.



Chapter 3
Limits and Derivatives

3.1 Introduction

Over a period of 350 years or more, calculus has evolved conceptually and in no-
tation. Up until recently, calculus was described using infinitesimals, which are
numbers so small, they can be ignored in certain products. This led to arguments
about “ratios of infinitesimally small quantities” and “ratios of evanescent quanti-
ties”. Eventually, it was the French mathematician Augustin-Louis Cauchy (1789–
1857), and the German mathematician Karl Weierstrass (1815–1897), who showed
how limits can replace infinitesimals. However, in recent years, infinitesimals have
bounced back onto the scene in the field of “non-standard analysis”, pioneered
by the German mathematician Abraham Robinson (1918–1974). Robinson showed
how infinitesimal and infinite quantities can be incorporated into mathematics using
simple arithmetic rules:

infinitesimal × bounded = infinitesimal

infinitesimal × infinitesimal = infinitesimal

where a bounded number could be a real or integer quantity. So, even though limits
have been adopted by modern mathematicians to describe calculus, there is still
room for believing in infinitesimal quantities.

In this chapter I show how limits are used to measure a function’s rate of change
accurately, instead of using intelligent guess work. Limiting conditions also permit
us to explore the behaviour of functions that are discontinuous for particular values
of their independent variable. For example, rational functions are often sensitive to
a specific value of their variable, which gives rise to the meaningless condition 0/0.
The function

f (x) = x − 4√
x − 2

generates meaningful results until x = 4, when the quotient becomes 0/0. Limits
permit us to handle such conditions.

J. Vince, Calculus for Computer Graphics, DOI 10.1007/978-1-4471-5466-2_3,
© Springer-Verlag London 2013
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We continue to apply limiting conditions to identify a function’s derivative,
which provides a powerful analytical tool for computing the derivative of function
sums, products and quotients. We begin this chapter by exploring small numerical
quantities and how they can be ignored if they occur in certain products, but remain
important in quotients.

3.2 Small Numerical Quantities

The adjective small is a relative term, and requires clarification in the context of
numbers. For example, if numbers are in the hundreds, and also contain some deci-
mal component, then it seems reasonable to ignore digits after the 3rd decimal place
for any quick calculation. For instance,

100.000003 × 200.000006 ≈ 20,000

and ignoring the decimal part has no significant impact on the general accuracy of
the answer, which is measured in tens of thousands.

To develop an algebraic basis for this argument let’s divide a number into two
parts: a primary part x, and some very small secondary part δx (pronounced delta x).
In one of the above numbers, x = 100 and δx = 0.000003. Given two such numbers,
x1 and y1, their product is given by

x1 = x + δx

y1 = y + δy

x1y1 = (x + δx)(y + δy)

= xy + x · δy + y · δx + δx · δy.

Using x1 = 100.000003 and y1 = 200.000006 we have

x1y1 = 100 × 200 + 100 × 0.000006 + 200 × 0.000003 + 0.000003 × 0.000006

= 20,000 + 0.0006 + 0.0006 + 0.00000000018

= 20,000 + 0.0012 + 0.00000000018

= 20,000.00120000018

where it is clear that the products x · δy, y · δx and δx · δy contribute very little to
the result. Furthermore, the smaller we make δx and δy, their contribution becomes
even more insignificant. Just imagine if we reduce δx and δy to the level of quantum
phenomenon, e.g. 10−34, then their products play no part in every-day numbers.
But there is no need to stop there, we can make δx and δy as small as we like, e.g.
10−100,000,000,000. Later on we employ the device of reducing a number towards
zero, such that any products involving them can be dropped from any calculation.
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Even though the product of two numbers less than zero is an even smaller num-
ber, care must be taken with their quotients. For example, in the above scenario,
where δy = 0.000006 and δx = 0.000003,

δy

δx
= 0.000006

0.000003
= 2

so we must watch out for such quotients.
From now on I will employ the term derivative to describe a function’s rate of

change relative to its independent variable. I will now describe two ways of com-
puting a derivative, and provide a graphical interpretation of the process. The first
way uses simple algebraic equations, and the second way uses a functional repre-
sentation. Needless to say, they both give the same result.

3.3 Equations and Limits

3.3.1 Quadratic Function

Here is a simple algebraic approach using limits to compute the derivative of a
quadratic function. Starting with the function y = x2, let x change by δx, and let δy

be the corresponding change in y. We then have

y = x2

y + δy = (x + δx)2

= x2 + 2x · δx + (δx)2

δy = 2x · δx + (δx)2.

Dividing throughout by δx we have

δy

δx
= 2x + δx.

The ratio δy/δx provides a measure of how fast y changes relative to x, in incre-
ments of δx. For example, when x = 10

δy

δx
= 20 + δx,

and if δx = 1, then δy/δx = 21. Equally, if δx = 0.001, then δy/δx = 20.001. By
making δx smaller and smaller, δy becomes equally smaller, and their ratio con-
verges towards a limiting value of 20.

In this case, as δx approaches zero, δy/δx approaches 2x, which is written

lim
δx→0

δy

δx
= 2x.
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Thus in the limit, when δx = 0, we create a condition where δy is divided by zero—
which is a meaningless operation. However, if we hold onto the idea of a limit, as
δx → 0, it is obvious that the quotient δy/δx is converging towards 2x. The sub-
terfuge employed to avoid dividing by zero is to substitute another quotient dy/dx

to stand for the limiting condition:

dy

dx
= lim

δx→0

δy

δx
= 2x.

dy/dx (pronounced dee y dee x) is the derivative of y = x2, i.e. 2x. For instance,
when x = 0, dy/dx = 0, and when x = 3, dy/dx = 6. The derivative dy/dx, is the
instantaneous rate at which y changes relative to x.

If we had represented this equation as a function:

f (x) = x2

then dy/dx is another way of expressing f ′(x).
Now let’s introduce two constants into the original quadratic equation to see what

effect, if any, they have on the derivative. We begin with

y = ax2 + b

and increment x and y:

y + δy = a(x + δx)2 + b

= a
(
x2 + 2x · δx + (δx)2) + b

δy = a
(
2x · δx + (δx)2).

Dividing throughout by δx:

δy

δx
= a(2x + δx)

and the derivative is
dy

dx
= lim

δx→0

δy

δx
= 2ax.

Thus we see the added constant b disappears (i.e. because it does not change), whilst
the multiplied constant a is transmitted through to the derivative.

3.3.2 Cubic Equation

Now let’s repeat the above analysis for y = x3:

y = x3
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y + δy = (x + δx)3

= x3 + 3x2 · δx + 3x(δx)2 + (δx)3

δy = 3x2 · δx + 3x(δx)2 + (δx)3.

Dividing throughout by δx:

δy

δx
= 3x2 + 3x · δx + (δx)2.

Employing the idea of infinitesimals, one would argue that any term involving δx

can be ignored, because its numerical value is too small to make any contribution
to the result. Similarly, using the idea of limits, one would argue that as δx is made
increasingly smaller, towards zero, any term involving δx rapidly disappears.

Using limits, we have

lim
δx→0

δy

δx
= 3x2

or
dy

dx
= lim

δx→0

δy

δx
= 3x2.

We could also show that if y = ax3 + b then

dy

dx
= 3ax2.

This incremental technique can be used to compute the derivative of all sorts of
functions.

If we continue computing the derivatives of higher-order polynomials, we dis-
cover the following pattern:

y = x2,
dy

dx
= 2x

y = x3,
dy

dx
= 3x2

y = x4,
dy

dx
= 4x3

y = x5,
dy

dx
= 5x4.

Clearly, the rule is

y = xn,
dy

dx
= nxn−1

but we need to prove why this is so. The solution is found in the binomial expansion
for (x + δx)n, which can be divided into three components:
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1. Decreasing terms of x.
2. Increasing terms of δx.
3. The terms of Pascal’s triangle.

For example, the individual terms of (x + δx)4 are:

Decreasing terms of x: x4 x3 x2 x1 x0

Increasing terms of δx: (δx)0 (δx)1 (δx)2 (δx)3 (δx)4

The terms of Pascal’s triangle: 1 4 6 4 1

which when combined produce

x4 + 4x3(δx) + 6x2(δx)2 + 4x(δx)3 + (δx)4.

Thus when we begin an incremental analysis:

y = x4

y + δy = (x + δx)4

= x4 + 4x3(δx) + 6x2(δx)2 + 4x(δx)3 + (δx)4

δy = 4x3(δx) + 6x2(δx)2 + 4x(δx)3 + (δx)4.

Dividing throughout by δx:

δy

δx
= 4x3 + 6x2(δx)1 + 4x(δx)2 + (δx)3.

In the limit, as δx slides to zero, only the second term of the original binomial
expansion remains:

4x3.

The second term of the binomial expansion (1 + δx)n is always of the form

nxn−1

which is the proof we require.

3.3.3 Functions and Limits

In order to generalise the above findings, let’s approach the above analysis using
a function of the form y = f (x). We begin by noting some arbitrary value of its
independent variable and note the function’s value. In general terms, this is x and
f (x) respectively. We then increase x by a small amount δx, to give x + δx, and
measure the function’s value again: f (x + δx). The function’s change in value is
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f (x + δx)−f (x), whilst the change in the independent variable is δx. The quotient
of these two quantities approximates to the function’s rate of change at x:

f (x + δx) − f (x)

δx
. (3.1)

By making δx smaller and smaller towards zero, (3.1) converges towards a limiting
value expressed as

dy

dx
= lim

δx→0

f (x + δx) − f (x)

δx
(3.2)

which can be used to compute all sorts of functions. For example, to compute the
derivative of sinx we proceed as follows:

y = sinx

y + δy = sin(x + δx).

Using the identity sin(A + B) = sinA cosB + cosA sinB , we have

y + δy = sinx cos(δx) + cosx sin(δx)

δy = sinx cos(δx) + cosx sin(δx) − sinx

= sinx
(
cos(δx) − 1

) + cosx sin(δx).

Dividing throughout by δx we have

δy

δx
= sinx

δx

(
cos(δx) − 1

) + sin(δx)

δx
cosx.

In the limit as δx → 0, (cos(δx) − 1) → 0 and sin(δx)/δx = 1 (see Appendix A),
and

dy

dx
= cosx

which confirms our “guesstimate” in Chap. 2. Before moving on, let’s compute the
derivative of cosx.

y = cosx

y + δy = cos(x + δx).

Using the identity cos(A + B) = cosA cosB − sinA sinB , we have

y + δy = cosx cos(δx) − sinx sin(δx)

δy = cosx cos(δx) − sinx sin(δx) − cosx

= cosx
(
cos(δx) − 1

) − sinx sin(δx).
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Fig. 3.1 Sketch of f (x) = x2

Dividing throughout by δx we have

δy

δx
= cosx

δx
(cos(δx) − 1) − sin(δx)

δx
sinx.

In the limit as δx → 0, (cos(δx) − 1) → 0 and sin(δx)/δx = 1 (see Appendix A),
and

dy

dx
= − sinx

which also confirms our “guesstimate”. We will continue to employ this strategy to
compute the derivatives of other functions later on.

3.3.4 Graphical Interpretation of the Derivative

To illustrate this limiting process graphically, consider the scenario in Fig. 3.1 where
the sample point is P . In this case the function is f (x) = x2 and P ’s coordinates are
(x, x2). We identify another point R, displaced δx to the right of P , with coordinates
(x + δx, x2). The point Q on the curve, vertically above R, has coordinates (x +
δx, (x + δx)2). When δx is relatively small, the slope of the line PQ approximates
to the function’s rate of change at P , which is the graph’s slope. This is given by

slope = QR

PR
= (x + δx)2 − x2

δx

= x2 + 2x(δx) + (δx)2 − x2

δx

= 2x(δx) + (δx)2

δx

= 2x + δx.
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We can now reason that as δx is made smaller and smaller, Q approaches P , and
slope becomes the graph’s slope at P . This is the limiting condition:

dy

dx
= lim

δx→0
(2x + δx) = 2x.

Thus, for any point with coordinates (x, x2), the slope is given by 2x. For example,
when x = 0, the slope is 0, and when x = 4, the slope is 8, etc.

3.3.5 Derivatives and Differentials

Given a function f (x), the ratio df/dx represents the instantaneous change of f for
some x, and is called the first derivative of f (x). For linear functions, this is con-
stant, for other functions, the derivative’s value changes with x and is represented
by a function.

The elements df , dy and dx are called differentials, and historically, the deriva-
tive used to be called the differential coefficient, but has now been dropped in favour
of derivative. One can see how the idea of a differential coefficient arose if we write,
for example:

dy

dx
= 3x

as

dy = 3x dx.

In this case, 3x acts like a coefficient of dx, nevertheless, we will use the word
derivative. It is worth noting that if y = x, then dy/dx = 1, or dy = dx. The two
differentials are individual algebraic quantities, which permits us to write statements
such as

dy

dx
= 3x, dy = 3x dx, dx = dy

3x
.

For example, given

y = 6x3 − 4x2 + 8x + 6

then

dy

dx
= 18x2 − 8x + 8

which is the instantaneous change of y relative to x. When x = 1, dy/dx = 18 −
8 + 8 = 18, which means that y is changing 18 times faster than x. Consequently,
dx/dy = 1/18.



26 3 Limits and Derivatives

3.3.6 Integration and Antiderivatives

If it is possible to differentiate a function, it seems reasonable to assume the exis-
tence of an inverse process to convert a derivative back to its associated function.
Fortunately, this is the case, but there are some limitations. This inverse process is
called integration and reveals the antiderivative of a function. Many functions can
be paired together in the form of a derivative and an antiderivative, such as 2x with
x2, and cosx with sinx. However, there are many functions where it is impossible
to derive its antiderivative in a precise form. For example, there is no simple, fi-
nite functional antiderivative for sinx2 or (sinx)/x. To understand integration, let’s
begin with a simple derivative.

If we are given

dy

dx
= 18x2 − 8x + 8

it is not too difficult to reason that the original function could have been

y = 6x3 − 4x2 + 8x.

However, it could have also been

y = 6x3 − 4x2 + 8x + 2

or

y = 6x3 − 4x2 + 8x + 20

or with any other constant. Consequently, when integrating the original function, the
integration process has to include a constant:

y = 6x3 − 4x2 + 8x + C.

The value of C is not always required, but it can be determined if we are given some
extra information, such as y = 10 when x = 0, then C = 10.

The notation for integration employs a curly “S” symbol
∫

, which may seem
strange, but is short for sum and will be explained later. So, starting with

dy

dx
= 18x2 − 8x + 8

we rewrite this as

dy = (
18x2 − 8x + 8

)
dx

and integrate both sides, where dy becomes y and the right-hand-side becomes
∫ (

18x2 − 8x + 8
)
dx
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although brackets are not always used:

y =
∫

18x2 − 8x + 8dx.

This equation reads: “y is the integral of 18x2 − 8x + 8 dee x.” The dx reminds us
that x is the independent variable. In this case we can write the answer:

dy = 18x2 − 8x + 8dx

y =
∫

18x2 − 8x + 8dx

= 6x3 − 4x2 + 8x + C

where C is some constant.
Another example:

dy = 6x2 + 10x dx

y =
∫

6x2 + 10x dx

= 2x3 + 5x2 + C.

Finally,

dy = dx

y =
∫

dx

= x + C.

The antiderivatives for the sine and cosine functions are written:
∫

sinx dx = − cosx + C

∫
cosx dx = sinx + C

which you may think obvious, as we have just computed their derivatives. However,
the reason for introducing integration alongside differentiation, is to make you fa-
miliar with the notation, and memorise the two distinct processes, as well as lay the
foundations for later chapters.

3.4 Summary

This chapter has shown how limits provide a useful tool for computing a function’s
derivative. Basically, the function’s independent variable is disturbed by a very small
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quantity, typically δx, which alters the function’s value. The quotient

f (x + δx) − f (x)

δx

is a measure of the function’s rate of change relative to its independent variable. By
making δx smaller and smaller towards zero, we converge towards a limiting value
called the function’s derivative. Unfortunately, not all functions possess a derivative,
therefore we can only work with functions that can be differentiated. In the next
chapter we discover how to differentiate different types of functions and function
combinations.

We have also come across integration—the inverse of differentiation—and as we
compute the derivatives of other functions, the associated antiderivative will also be
included.

3.5 Worked Examples

Example 1 As x → 0, find the limiting value of

x8 + x2

3x2 − x3
.

First, we simplify the quotient by dividing the numerator and denominator by x2:

lim
x→0

x6 + 1

3 − x
.

We can now reason that as x → 0, (x6 + 1) → 1 and (3 − x) → 3, therefore,

f (x) = x8 + x2

3x2 − x3
= 1

3

which is confirmed by the function’s graph in Fig. 3.2.

Example 2 As x → 0, find the limiting value of

x2 − 1

3x2 − 2x − 1
.

First, we simplify the numerator and denominator:

lim
x→0

(x + 1)(x − 1)

(3x + 1)(x − 1)
= lim

x→0

x + 1

3x + 1
.

We can now reason that as x → 0, (x + 1) → 1 and (3x + 1) → 1, therefore,

lim
x→0

x2 − 1

3x2 − 2x − 1
= 1

which is confirmed by the function’s graph in Fig. 3.3.
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Fig. 3.2 Graph of

f (x) = x8+x2

3x2−x3

Fig. 3.3 Graph of

f (x) = x2−1
3x2−2x−1

Example 3 Differentiate y = 3x100 − 4.

dy

dx
= 300x99.

Example 4 Find the slope of the graph y = 3x2 + 2x when x = 2.

dy

dx
= 6x + 2.

When x = 2,

dy

dx
= 12 + 2 = 14

which is the slope.

Example 5 Find the slope of y = 6 sinx when x = π/6.

dy

dx
= 6 cosx.
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When x = π/3

dy

dx
= 6 cos

(
π

3

)

= 6 × 0.5 = 3.

Example 6 Integrate dy/dx = 5x2 + 4x.

dy = 5x2 + 4x dx

y =
∫

5x2 + 4x dx

= 5

3
x3 + 2x2 + C.

Example 7 Integrate dy/dx = 4x3 + 3x2.

dy = 4x3 + 3x2 dx

y =
∫

4x3 + 3x2 dx

= x4 + x3 + C.



Chapter 4
Derivatives and Antiderivatives

4.1 Introduction

Mathematical functions come in all sorts of shapes and sizes. Sometimes they are
described explicitly where y equals some function of its independent variable(s),
such as

y = x sinx

or implicitly where y, and its independent variable(s) are part of an equation, such
as

x2 + y2 = 10.

A function may reference other functions, such as

y = sin
(
cos2 x

)

or

y = xsinx.

There is no limit to the way functions can be combined, which makes it impossible
to cover every eventuality. Nevertheless, in this chapter we explore some useful
combinations that prepare us for any future surprises.

In the first section we examine how to differentiate different types of functions,
that include sums, products and quotients, which are employed later on to differ-
entiate specific functions such as trigonometric, logarithmic and hyperbolic. Where
relevant, I include the appropriate antiderivative to complement its derivative.

4.2 Differentiating Groups of Functions

So far, we have only considered simple individual functions, which unfortunately,
do not represent the equations found in mathematics, science, physics or even com-
puter graphics. In general, the functions we have to differentiate include sums of

J. Vince, Calculus for Computer Graphics, DOI 10.1007/978-1-4471-5466-2_4,
© Springer-Verlag London 2013
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functions, functions of functions, function products and function quotients. Let’s
explore these four scenarios.

4.2.1 Sums of Functions

A function normally computes a numerical value from its independent variable(s),
and if it can be differentiated, its derivative generates another function with the same
independent variable. Consequently, if a function contains two functions of x, such
as u and v, where

y = u(x) + v(x)

which can be abbreviated to

y = u + v

then

dy

dx
= du

dx
+ dv

dx

where we just sum their individual derivatives. For example, let

u = 2x6

v = 3x5

y = u + v

y = 2x6 + 3x5

then

dy

dx
= 12x5 + 15x4.

Similarly, let

u = 2x6

v = sinx

w = cosx

y = u + v + w

y = 2x6 + sinx + cosx

then

dy

dx
= 12x5 + cosx − sinx.
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Fig. 4.1 Graph of
y = 2x6 + sinx + cosx and
its derivative,
y = 12x5 + cosx − sinx

(dashed line)

Figure 4.1 shows a graph of y = 2x6 + sinx + cosx and its derivative y = 12x5 +
cosx − sinx. Differentiating such functions is relatively easy, so too, is integrating.
Given

dy

dx
= du

dx
+ dv

dx

then

y =
∫

udx +
∫

v dx

=
∫

(u + v)dx

and given

dy

dx
= 12x5 + cosx − sinx

then

dy = 12x5 + cosx − sinx dx

y =
∫

12x5 dx +
∫

cosx dx −
∫

sinx dx

= 2x6 + sinx + cosx + C.

4.2.2 Function of a Function

One of the advantages of modern mathematical notation is that it lends itself to un-
limited elaboration without introducing any new symbols. For example, the polyno-
mial 3x2 + 2x is easily raised to some power by adding brackets and an appropriate
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index: (3x2 + 2x)2. Such an object is a function of a function, because the function
3x2 + 2x is subjected to a further squaring function. The question now is: how are
such functions differentiated? Well, the answer is relatively easy, but does introduce
some new ideas.

Imagine that Heidi swims twice as fast as John, who in turn, swims three times as
fast as his dog, Monty. It should be obvious that Heidi swims six (2×3) times faster
than Monty. This product rule, also applies to derivatives, because if y changes twice
as fast as u, i.e. dy/du = 2, and u changes three times as fast as x, i.e. du/dx = 3,
then y changes six times as fast as x:

dy

dx
= dy

du
· du

dx
.

To differentiate

y = (
3x2 + 2x

)2

we substitute

u = 3x2 + 2x

then

y = u2

and

dy

du
= 2u

= 2
(
3x2 + 2x

)

= 6x2 + 4x.

Next, we require du/dx:

u = 3x2 + 2x

du

dx
= 6x + 2

therefore, we can write

dy

dx
= dy

du
· du

dx

= (
6x2 + 4x

)
(6x + 2)

= 36x3 + 36x2 + 8x.

This result is easily verified by expanding the original polynomial and differentiat-
ing:

y = (
3x2 + 2x

)2
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Fig. 4.2 Graph of
y = (3x2 + 2x)2 and its
derivative
y = 36x3 + 36x2 + 8x

(dashed line)

= (
3x2 + 2x

)(
3x2 + 2x

)

= 9x4 + 12x3 + 4x2

dy

dx
= 36x3 + 36x2 + 8x.

Figure 4.2 shows a graph of y = (3x2 + 2x)2 and its derivative y = 36x3 + 36x2 +
8x.

Let’s differentiate sinax using the this method:

y = sinax.

We begin by substituting u for ax:

y = sinu

dy

du
= cosu

= cosax.

Next, we require du/dx:

u = ax

du

dx
= a

therefore, we can write

dy

dx
= dy

du
· du

dx

= cosax · a
= a cosax.
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Consequently, given

dy

dx
= cosax

then

dy = cosax dx

y =
∫

cosax dx

= 1

a
sinax + C.

Similarly, given

dy

dx
= sinax

then

dy = sinax dx

y =
∫

sinax dx

= −1

a
cosax + C.

Now let’s differentiate sinx2 using the same method:

y = sinx2.

We begin by substituting u for x2:

y = sinu

dy

du
= cosu

= cosx2.

Next, we require du/dx:

u = x2

du

dx
= 2x

therefore, we can write

dy

dx
= dy

du
· du

dx
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Fig. 4.3 Graph of y = sinx2

and its derivative
y = 2x cosx2 (dashed line)

= cosx2 · 2x

= 2x cosx2.

Figure 4.3 shows a graph of y = sinx2 and its derivative y = 2x cosx2. In gen-
eral, there can be any depth of functions within a function, which permits us to write
the chain rule for derivatives:

dy

dx
= dy

du
· du

dv
· dv

dw
· dw

dx
.

4.2.3 Function Products

Function products occur frequently in every-day mathematics, and involve the prod-
uct of two, or more functions. Here are three simple examples:

y = (
3x2 + 2x

)(
2x2 + 3x

)

y = sinx cosx

y = x2 sinx.

When it comes to differentiating function products of the form

y = uv,

it seems natural to assume that

dy

dx
= du

dx
· dv

dx
(4.1)

which unfortunately, is incorrect. For example, in the case of

y = (
3x2 + 2x

)(
2x2 + 3x

)
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differentiating using the above rule (4.1) produces

dy

dx
= (6x + 2)(4x + 3)

= 24x2 + 26x + 6.

However, if we expand the original product and then differentiate, we obtain

y = (
3x2 + 2x

)(
2x2 + 3x

)

= 6x4 + 13x3 + 6x2

dy

dx
= 24x3 + 39x2 + 12x

which is correct, but differs from the first result. Obviously, (4.1) must be wrong. So
let’s return to first principles and discover the correct rule.

So far, we have incremented the independent variable—normally x—by δx to
discover the change in y—normally δy. Next, we see how the same notation can be
used to increment functions.

Given the following functions of x, u and v, where

y = uv

if x increases by δx, then there will be corresponding changes of δu, δv and δy, in
u, v and y respectively. Therefore,

y + δy = (u + δu)(v + δv)

= uv + uδv + vδu + δuδv

δy = uδv + vδu + δuδv.

Dividing throughout by δx we have

δy

δx
= u

δv

δx
+ v

δu

δx
+ δu

δv

δx
.

In the limiting condition:

dy

dx
= lim

δx→0

(
u

δv

δx

)
+ lim

δx→0

(
v
δu

δx

)
+ lim

δx→0

(
δu

δv

δx

)
.

As δx → 0, then δu → 0 and (δu δv
δx

) → 0. Therefore,

dy

dx
= u

dv

dx
+ v

du

dx
. (4.2)

Applying (4.2) to the original function product:

u = 3x2 + 2x



4.2 Differentiating Groups of Functions 39

Fig. 4.4 Graph of
y = (3x2 + 2x)(2x2 + 3x)

and its derivative
y = 24x3 + 39x2 + 12x

(dashed line)

v = 2x2 + 3x

y = uv

du

dx
= 6x + 2

dv

dx
= 4x + 3

dy

dx
= u

dv

dx
+ v

du

dx

= (
3x2 + 2x

)
(4x + 3) + (

2x2 + 3x
)
(6x + 2)

= (
12x3 + 17x2 + 6x

) + (
12x3 + 22x2 + 6x

)

= 24x3 + 39x2 + 12x

which agrees with our previous prediction. Figure 4.4 shows a graph of y = (3x2 +
2x)(2x2 + 3x) and its derivative y = 24x3 + 39x2 + 12x. Now let’s differentiate
y = sinx cosx using (4.2).

y = sinx cosx

u = sinx

du

dx
= cosx

v = cosx

dv

dx
= − sinx

dy

dx
= u

dv

dx
+ v

du

dx

= sinx(− sinx) + cosx cosx
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Fig. 4.5 Graph of
y = sinx cosx and its
derivative y = cos 2x (dashed
line)

= cos2 x − sin2 x

= cos 2x.

Using the identity sin 2x = 2 sinx cosx, we can rewrite the original function as

y = sinx cosx

dy

dx
= 1

2
sin 2x

= cos 2x

which confirms the above derivative.
Now let’s consider the antiderivative of cos 2x. Given

dy

dx
= cos 2x

then

dy = cos 2x dx

y =
∫

cos 2x dx

= 1

2
sin 2x + C

= sinx cosx + C.

Figure 4.5 shows a graph of y = sinx cos and its derivative y = cos 2x. Finally,
let’s differentiate y = x2 sinx:

y = x2 sinx

u = x2
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Fig. 4.6 Graph of
y = x2 sinx and its derivative
y = x2 cosx + 2x sinx

(dashed line)

du

dx
= 2x

v = sinx

dv

dx
= cosx

dy

dx
= u

dv

dx
+ v

du

dx

= x2 cosx + 2x sinx.

Figure 4.6 shows a graph of y = x2 sinx and its derivative x2 cosx + 2x sinx.
Given a function product y = uv, then

dy

dx
= u

dv

dx
+ v

du

dx
.

4.2.4 Function Quotients

Next, we investigate two ways to differentiate the quotient of two functions. The
first method preserves the quotient, whilst the second method converts the quotient
into a product. We begin with two functions of x, u and v, where

y = u

v

which makes y also a function of x.
We now increment x by δx and measure the change in u as δu, and the change

in v as δv. Consequently, the change in y is δy:

y + δy = u + δu

v + δv
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δy = u + δu

v + δv
− u

v

= v(u + δu) − u(v + δv)

v(v + δv)

= vδu − uδv

v(v + δv)
.

Dividing throughout by δx we have

δy

δx
= v δu

δx
− uδv

δx

v(v + δv)
.

As δx → 0, δu, δv and δy also tend towards zero, and the limiting conditions are

dy

dx
= lim

δx→0

δy

δx

v
du

dx
= lim

δx→0
v
δu

δx

u
dv

dx
= lim

δx→0
u

δv

δx

v2 = lim
δx→0

v(v + δv)

therefore,

dy

dx
= v du

dx
− udv

dx

v2
.

Now let’s repeat the process by writing the quotient as

y = uw

where w = v−1, which permits us to use the product rule:

dy

dx
= u

dw

dx
+ w

du

dx
.

dw/dx is computed using the chain rule:

dw

dx
= dw

dv
· dv

dx

which makes
dy

dx
= u

dw

dv
· dv

dx
+ w

du

dx

where
dw

dv
= − 1

v2
.
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Fig. 4.7 Graph of
y = (x2 + 3)(x + 2)/(x2 + 3)

and its derivative y = 1
(dashed line)

Therefore,

dy

dx
= − u

v2

dv

dx
+ 1

v

du

dx

= v du
dx

− udv
dx

v2

which agrees with the previous result. For example, to differentiate

y = x3 + 2x2 + 3x + 6

x2 + 3

where u = x3 + 2x2 + 3x + 6 and v = x2 + 3, we have

du

dx
= 3x2 + 4x + 3

dv

dx
= 2x

dy

dx
= (x2 + 3)(3x2 + 4x + 3) − (x3 + 2x2 + 3x + 6)(2x)

(x2 + 3)2

= (3x4 + 4x3 + 3x2 + 9x2 + 12x + 9) − (2x4 + 4x3 + 6x2 + 12x)

x4 + 6x2 + 9

= x4 + 6x2 + 9

x4 + 6x2 + 9

= 1

which is not a surprising result when one sees that the original function has the
factors

y = (x2 + 3)(x + 2)

x2 + 3
= x + 2

whose derivative is 1. Figure 4.7 shows a graph of y = (x2 + 3)(x + 2)/(x2 + 3)

and its derivative y = 1.
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4.2.5 Summary: Groups of Functions

Here are the rules for differentiating function sums, products, quotients and function
of a function:

Function dy/dx

y = u(x) ± v(x) du
dx

± dv
dx

y = u(v(x))
dy
du

+ du
dx

y = u(x)v(x) u dv
dx

+ v du
dx

y = u(x)/v(x)
v du

dx
−u dv

dx

v2

4.3 Differentiating Implicit Functions

Functions conveniently fall into two types: explicit and implicit. An explicit func-
tion, describes a function in terms of its independent variable(s), such as

y = a sinx + b cosx

where the value of y is determined by the values of a, b and x. On the other hand,
an implicit function, such as

x2 + y2 = 25

combines the function’s name with its definition. In this case, it is easy to untangle
the explicit form:

y =
√

25 − x2.

So far, we have only considered differentiating explicit functions, so now let’s ex-
amine how to differentiate implicit functions. Let’s begin with a simple explicit
function and differentiate it as it is converted into its implicit form.

Let

y = 2x2 + 3x + 4

then
dy

dx
= 4x + 3.

Now let’s start the conversion into the implicit form by bringing the constant 4 over
to the left-hand side:

y − 4 = 2x2 + 3x

differentiating both sides:

dy

dx
= 4x + 3.
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Bringing 4 and 3x across to the left-hand side:

y − 3x − 4 = 2x2

differentiating both sides:

dy

dx
− 3 = 4x

dy

dx
= 4x + 3.

Finally, we have

y − 2x2 − 3x − 4 = 0

differentiating both sides:

dy

dx
− 4x − 3 = 0

dy

dx
= 4x + 3

which seems straight forward.
The reason for working through this example is to remind us that when y is

differentiated we get dy/dx. Consequently, the following examples should be un-
derstood:

y + sinx + 4x = 0

dy

dx
+ cosx + 4 = 0

dy

dx
= − cosx − 4.

y + x2 − cosx = 0

dy

dx
+ 2x + sinx = 0

dy

dx
= −2x − sinx.

But how do we differentiate y2 + x2 = r2? Well, the important difference between
this implicit function and previous functions, is that it involves a function of a func-
tion. y is not only a function of x, but is squared, which means that we must employ
the chain rule described earlier:

dy

dx
= dy

du
· du

dx
.
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Therefore, given

y2 + x2 = r2

2y
dy

dx
+ 2x = 0

dy

dx
= −2x

2y

= −x√
r2 − x2

.

This is readily confirmed by expressing the original function in its explicit form and
differentiating:

y = (
r2 − x2) 1

2

which is a function of a function.
Let u = r2 − x2, then

du

dx
= −2x.

As y = u
1
2 , then

dy

du
= 1

2
u− 1

2

= 1

2u
1
2

= 1

2
√

r2 − x2
.

However,

dy

dx
= dy

du
· du

dx

= −2x

2
√

r2 − x2

= −x√
r2 − x2

which agrees with the implicit differentiated form.
As an another example, let’s find dy/dx for

x2 − y2 + 4x = 6y.
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Differentiating, we have

2x − 2y
dy

dx
+ 4 = 6

dy

dx
.

Rearranging the terms, we have

2x + 4 = 6
dy

dx
+ 2y

dy

dx

= dy

dx
(6 + 2y)

dy

dx
= 2x + 4

6 + 2y
.

If, for example, we have to find the slope of x2 − y2 + 4x = 6y at the point (4,3),
then we simply substitute x = 4 and y = 3 in dy/dx to obtain the answer 1.

Finally, let’s differentiate xn + yn = an:

xn + yn = an

nxn−1 + nyn−1 dy

dx
= 0

dy

dx
= −nxn−1

nyn−1

dy

dx
= −xn−1

yn−1
.

4.4 Differentiating Exponential and Logarithmic Functions

4.4.1 Exponential Functions

Exponential functions have the form y = ax , where the independent variable is the
exponent. Such functions are used to describe various forms of growth or decay,
from the compound interest law, to the rate at which a cup of tea cools down. One
special value of a is 2.718282 . . . , called e, where

e = lim
n→∞

(
1 + 1

n

)n

.

Raising e to the power x:

ex = lim
n→∞

(
1 + 1

n

)nx
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Fig. 4.8 Graphs of y = ex

and y = e−x

which, using the Binomial Theorem, is

ex = 1 + x + x2

2! + x3

3! + x4

4! + · · · .

If we let

y = ex

dy

dx
= 1 + x + x2

2! + x3

3! + x4

4! + · · ·
= ex.

which is itself. Figure 4.8 shows graphs of y = ex and y = e−x .
Now let’s differentiate y = ax . We know from the rules of logarithms that

logxn = n logx

therefore, given

y = ax

then

lny = lnax = x lna

therefore

y = ex lna

which means that

ax = ex lna.

Consequently,

d

dx

(
ax

) = d

dx

(
ex lna

)
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= lna ex lna

= lna ax.

Similarly, it can be shown that

y = e−x,
dy

dx
= −e−x

y = eax,
dy

dx
= aeax

y = e−ax,
dy

dx
= −ae−ax

y = ax,
dy

dx
= lna ax

y = a−x,
dy

dx
= − lna a−x.

The exponential antiderivatives are written:

∫
ex dx = ex + C

∫
e−x dx = −e−x + C

∫
eax dx = 1

a
eax + C

∫
e−ax dx = −1

a
eax + C

∫
ax dx = 1

lna
ax + C

∫
a−x dx = − 1

lna
a−x + C.

4.4.2 Logarithmic Functions

Given a function of the form

y = lnx

then

x = ey.
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Fig. 4.9 Graph of y = lnx

and its derivative y = 1/x

(dashed)

Therefore,

dx

dy
= ey

= x

dy

dx
= 1

x
.

Thus

d

dx
(lnx) = 1

x
.

Figure 4.9 shows the graph of y = lnx and its derivative y = 1/x. Conversely,

∫
1

x
dx = ln |x| + C.

When differentiating logarithms to a base a, we employ the conversion formula:

y = loga x

= (lnx)(loga e)

whose derivative is

dy

dx
= 1

x
loga e.

When a = 10, then log10 e = 0.4343 . . . and

d

dx
(log10 x) = 0.4343

x
.

Figure 4.10 shows the graph of y = log10 x and its derivative y = 0.4343/x.
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Fig. 4.10 Graph of
y = log10 x and its derivative
y = 0.4343/x (dashed)

4.4.3 Summary: Exponential and Logarithmic Functions

Here are the rules for differentiating exponential and logarithmic functions:

y dy/dx

ex ex

e−x −e−x

eax aeax

e−ax −aeax

ax lna ax

a−x − lna a−x

lnx 1
x

loga x 1
x

loga e

log10 x 0.4343
x

Here are the rules for integrating exponential functions:

f (x)
∫

f (x)dx

ex ex + C

e−x −e−x + C

eax 1
a
eax + C

e−ax − 1
a
e−ax + C

ax 1
lna

ax + C

a−x − 1
lna

a−x + C

4.5 Differentiating Trigonometric Functions

We have only differentiated two trigonometric functions: sinx and cosx, so let’s
add tanx, cscx, secx and cotx to the list, as well as their inverse forms.
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Fig. 4.11 Graph of y = tanx

and its derivative
y = 1 + tan2 x (dashed)

4.5.1 Differentiating tan

Rather than return to first principles and start incrementing x by δx, we can employ
the rules for differentiating different function combinations and various trigonomet-
ric identities. In the case of tanax, this can be written as

tanax = sinax

cosax

and employ the quotient rule:

dy

dx
= v du

dx
− udv

dx

v2
.

Therefore, let u = sinax and v = cosax, and

dy

dx
= a cosax cosax + a sinax sinax

cos2 ax

= a(cos2 ax + sin2 ax)

cos2 ax

= a

cos2 ax

= a sec2 ax

= a
(
1 + tan2 ax

)
.

Figure 4.11 shows a graph of y = tanx and its derivative y = 1 + tan2 x.
It follows that

∫
sec2 ax dx = 1

a
tanax + C.
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Fig. 4.12 Graph of y = cscx

and its derivative
y = − cscx cotx (dashed)

4.5.2 Differentiating csc

Using the quotient rule:

y = cscax

= 1

sinax

dy

dx
= 0 − a cosax

sin2 ax

= −a cosax

sin2 ax

= − a

sinax
· cosax

sinax

= −a cscax · cotax.

Figure 4.12 shows a graph of y = cscx and its derivative y = − cscx cotx.
It follows that

∫
cscax · cotax dx = −1

a
cscax + C.

4.5.3 Differentiating sec

Using the quotient rule:

y = secax

= 1

cosax
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Fig. 4.13 Graph of y = secx

and its derivative
y = secx tanx (dashed)

dy

dx
= −(−a sinax)

cos2 ax

= a sinax

cos2 ax

= a

cosax
· sinax

cosax

= a secax · tanax.

Figure 4.13 shows a graph of y = cscx and its derivative y = − cscx cotx.
It follows that

∫
secax · tanax dx = 1

a
secax + C.

4.5.4 Differentiating cot

Using the quotient rule:

y = cotax

= 1

tanax

dy

dx
= −a sec2 ax

tan2 ax

= − a

cos2 ax
· cos2 ax

sin2 ax

= − a

sin2 ax
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Fig. 4.14 Graph of y = cotx
and its derivative
y = −(1 − cot2 x) (dashed)

= −a csc2 ax

= −a
(
1 + cot2 ax

)
.

Figure 4.14 shows a graph of y = cotx and its derivative y = −(1 + cot2 x).
It follows that

∫
csc2 ax dx = −1

a
cotat + C.

4.5.5 Differentiating arcsin, arccos and arctan

These inverse functions are solved using a clever strategy.
Let

x = siny

then

y = arcsinx.

Differentiating the first expression, we have

dx

dy
= cosy

dy

dx
= 1

cosy

and as sin2 y + cos2 y = 1, then

cosy =
√

1 − sin2 y =
√

1 − x2
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and

d

dx
(arcsinx) = 1√

1 − x2
.

Using a similar technique, it can be shown that

d

dx
(arccosx) = − 1√

1 − x2

d

dx
(arctanx) = 1

1 + x2
.

It follows that
∫

dx√
1 − x2

= arcsinx + C

∫
dx

1 + x2
= arctanx + C.

4.5.6 Differentiating arccsc, arcsec and arccot

Let

y = arccscx

then

x = cscy

= 1

siny

dx

dy
= − cosy

sin2 y

dy

dx
= − sin2 y

cosy

= − 1

x2

x√
x2 − 1

d

dx
(arccscx) = − 1

x
√

x2 − 1
.

Similarly,

d

dx
(arcsecx) = 1

x
√

x2 − 1
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d

dx
(arccotx) = − 1

x2 + 1
.

It follows:
∫

dx

x
√

x2 − 1
= arcsec |x| + C

∫
dx

x2 + 1
= − arccotx + C.

4.5.7 Summary: Trigonometric Functions

Here are the rules for differentiating trigonometric functions:

y dy/dx

sinax a cosax

cosax −a sinax

tanax a(1 + tan2 ax)

cscax −a cscax · cotax

secax a secax · tanax

cotax −a(1 + cot2 ax)

and for the inverse trigonometric functions:

y dy/dx

arcsinx 1√
1−x2

arccosx − 1√
1−x2

arctanx 1
1+x2

arccscx − 1

x
√

x2−1

arcsecx 1

x
√

x2−1

arccotx − 1
x2+1

Here are the rules for integrating trigonometric functions:

f (x)
∫

f (x)dx

sinax − 1
a

cosax + C

cosax 1
a

sinax + C

sec2 ax 1
a

tanax + C

cscax · cotax − 1
a

cscax + C

secax · tanax 1
a

secax + C

csc2 ax − 1
a

cotax + C
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and for the inverse trigonometric functions:

f (x)
∫

f (x)dx

1√
1−x2

arcsinx + C

1
1+x2 arctanx + C

1

x
√

x2−1
arcsec |x| + C

4.6 Differentiating Hyperbolic Functions

Trigonometric functions are useful for parametric, circular motion, whereas, hy-
perbolic functions arise in equations for the absorption of light, mechanics and in
integral calculus. Figure 4.15 shows graphs of the unit circle and a hyperbola whose
respective equations are

x2 + y2 = 1

x2 − y2 = 1

where the only difference between them is a sign. The parametric form for the
trigonometric, or circular functions and the hyperbolic functions are respectively:

sin2 θ + cos2 θ = 1

cosh2 x − sinh2 x = 1.

The three hyperbolic functions have the following definitions:

sinhx = ex − e−x

2

coshx = ex + e−x

2

tanhx = sinhx

coshx
= e2x − 1

e2x + 1

and their reciprocals are:

cosechx = 1

sinhx
= 2

ex − e−x

sechx = 1

coshx
= 2

ex + e−x

cothx = 1

tanhx
= e2x + 1

e2x − 1
.
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Fig. 4.15 Graphs of the unit
circle x2 + y2 = 1 and the
hyperbola x2 − y2 = 1

Table 4.1 Hyperbolic
function names Function Reciprocal Inverse function Inverse reciprocal

sinh cosech arsinh arcsch

cosh sech arcosh arsech

tanh coth artanh arcoth

Other useful identities include:

sech 2x = 1 − tanh2 x

cosech 2 = coth2 x − 1.

The coordinates of P and Q in Fig. 4.15 are given by P(cos θ, sin θ) and
Q(coshx, sinhx). Table 4.1 shows the names of the three hyperbolic functions,
their reciprocals and inverse forms. As these functions are based upon ex and e−x ,
they are relatively easy to differentiate, which we now investigate.

4.6.1 Differentiating sinh, cosh and tanh

The hyperbolic functions are differentiated as follows.
Let

y = sinhx

then

y = ex − e−x

2

dy

dx
= ex + e−x

2
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Fig. 4.16 Graph of sinhx

and its derivative coshx

d

dx
(sinhx) = coshx.

Figure 4.16 shows a graph of sinhx and its derivative coshx.
It follows that

∫
coshx dx = sinhx + C.

Let

y = coshx

then

y = ex + e−x

2

dy

dx
= ex − e−x

2
d

dx
(coshx) = sinhx.

Figure 4.17 shows a graph of coshx and its derivative sinhx.
It follows that

∫
sinhx dx = coshx + C.

To differentiate tanhx we employ the quotient rule, and the parametric form of
the hyperbola.

Let

y = tanhx

then

y = sinhx

coshx
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Fig. 4.17 Graph of coshx

and its derivative sinhx

Fig. 4.18 Graph of tanhx

and its derivative sech2 x

dy

dx
= coshx coshx − sinhx sinhx

cosh2 x

= cosh2 x − sinh2 x

cosh2 x
= 1

cosh2 x

d

dx
(tanhx) = sech 2x.

Figure 4.18 shows a graph of tanhx and its derivative sech2 x.

4.6.2 Differentiating cosech, sech and coth

The hyperbolic reciprocals are differentiated as follows.
Let

y = cosechx
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then

y = 1

sinhx

dy

dx
= − coshx

sinh2 x

d

dx
(cosechx) = − cosechx cothx.

Let

y = sechx

then

y = 1

coshx

dy

dx
= − sinhx

cosh2 x

d

dx
(sechx) = − sechx tanhx.

Let

y = cothx

then

y = 1

tanhx
= coshx

sinhx

dy

dx
= sinh2 x − cosh2 x

sinh2 x
= −1

sinh2 x

d

dx
(cothx) = − cosech 2x.

4.6.3 Differentiating arsinh, arcosh and artanh

The inverse hyperbolic functions are differentiated as follows.
Let

y = arsinhx

then

x = sinhy
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dx

dy
= coshy

dy

dx
= 1

coshy
= 1√

1 + sinh2 y

d

dx
(arsinhx) = 1√

1 + x2
.

It follows that
∫

dx√
1 + x2

= arsinhx + C.

Let

y = arcoshx

then

x = coshy

dx

dy
= sinhy

dy

dx
= 1

sinhy
= 1√

cosh2 y − 1

d

dx
(arcoshx) = 1√

x2 − 1
.

It follows that
∫

dx√
x2 − 1

= arcoshx + C.

Let

y = artanhx

then

x = tanhy

dx

dy
= sech 2y

dy

dx
= 1

sech 2y
= 1

1 − tanh2 y

d

dx
(artanhx) = 1

1 − x2
.
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It follows that
∫

dx

1 − x2
= artanhx + C.

4.6.4 Differentiating arcsch, arsech and arcoth

The inverse, reciprocal hyperbolic functions are differentiated as follows.
Let

y = arcschx

then

x = cosechy = 1

sinhy

dx

dy
= − coshy

sinh2 y

dy

dx
= − sinh2 y

coshy

d

dx
(arcschx) = − 1

x
√

1 + x2
.

It follows that
∫

dx

x
√

1 + x2
= − arcschx + C.

Let

y = arsechx

then

x = sechy = 1

coshy

dx

dy
= − sinhy

cosh2 y

dy

dx
= − cosh2 y

sinhy

d

dx
(arsechx) = − 1

x
√

1 − x2
.

It follows that
∫

dx

x
√

1 − x2
= − arsechx + C.
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Let

y = arcothx

then

x = cothy = coshy

sinhy

dx

dy
= sinh2 y − cosh2 y

sinh2 y

dy

dx
= sinh2 y

sinh2 y − cosh2 y

d

dx
(arcothx) = − 1

x2 − 1
.

It follows that
∫

dx

x2 − 1
= − arcothx + C.

4.6.5 Summary: Hyperbolic Functions

Here are the rules for differentiating hyperbolic functions:

y dy/dx

sinhx coshx

coshx sinhx

tanhx sech2 x

cosechx − cosechx cothx

sechx − sechx tanhx

cothx − cosech2 x

and the inverse, hyperbolic functions:

y dy/dx

arsinhx 1√
1+x2

arcoshx 1√
x2−1

artanhx 1
1−x2

arcschx − 1

x
√

1+x2

arsechx − 1

x
√

1−x2

arcothx − 1
x2−1



66 4 Derivatives and Antiderivatives

Here are the rules for integrating hyperbolic functions:

f (x)
∫

f (x)dx

sinhx coshx + C

coshx sinhx + C

sech2 x tanhx + C

and the inverse, hyperbolic functions:

f (x)
∫

f (x)dx

1√
1+x2

arsinhx + C

1√
x2−1

arcoshx + C

1
1−x2 artanhx + C

4.7 Summary

In this chapter we have seen how to differentiate generic functions such as sums,
products, quotients and a function of a function, and we have also seen how to
address explicit and implicit forms. These techniques were then used to differen-
tiate exponential, logarithmic, trigonometric and hyperbolic functions, which will
be employed in later chapters to solve various problems. Where relevant, integrals
of certain functions have been included to show the intimate relationship between
derivatives and antiderivatives.

Hopefully, it is now clear that differentiation is like an operator—in that it de-
scribes how fast a function changes relative to its independent variable in the form
of another function. What we have not yet considered is repeated differentiation and
its physical meaning, which is the subject of the next chapter.



Chapter 5
Higher Derivatives

5.1 Introduction

There are three sections to this chapter: The first section shows what happens when a
function is repeatedly differentiated; the second shows how these higher derivatives
resolve local minimum and maximum conditions; and the third section provides a
physical interpretation for these derivatives. Let’s begin by finding the higher deriva-
tives of simple polynomials.

5.2 Higher Derivatives of a Polynomial

We have previously seen that polynomials of the form

y = axr + bxs + cxt + · · ·
are differentiated as follows:

dy

dx
= raxr−1 + sbxs−1 + tcxt−1 + · · · .

For example, let

y = 3x3 + 2x2 − 5x

then
dy

dx
= 9x2 + 4x − 5

which describes how the slope of the original function changes with x.
Figure 5.1 shows the graph of y = 3x3 + 2x2 − 5x and its derivative y = 9x2 +

4x − 5, and we can see that when x = −1 there is a local maximum, where the
function reaches a value of 4, then begins a downward journey to 0, where the slope
is −5. Similarly, when x � 0.55, there is a point where the function reaches a local
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Fig. 5.1 Graph of
y = 3x3 + 2x2 − 5x and its
derivative y = 9x2 + 4x − 5
(dashed)

minimum with a value of approximately −1.65. The slope is zero at both points,
which is reflected in the graph of the derivative.

Having differentiated the function once, there is nothing to prevent us differen-
tiating a second time, but first we require a way to annotate the process, which is
performed as follows. At a general level, let y be some function of x, then the first
derivative is

d

dx
(y).

The second derivative is found by differentiating the first derivative:

d

dx

(
dy

dx

)

and is written:

d2y

dx2
.

Similarly, the third derivative is

d3y

dx3

and the nth derivative:

dny

dxn
.

When a function is expressed as f (x), its derivative is written f ′(x). The second
derivative is written f ′′(x), and so on for higher derivatives.

Returning to the original function, the first and second derivatives are

dy

dx
= 9x2 + 4x − 5

d2y

dx2
= 18x + 4
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Fig. 5.2 Graph of
y = 3x3 + 2x2 − 5x, its first
derivative y = 9x2 + 4x − 5
(short dashes) and its second
derivative y = 18x + 4 (long
dashes)

and the third and fourth derivatives are

d3y

dx3
= 18

d4y

dx4
= 0.

Figure 5.2 shows the original function and the first two derivatives. The graph of
the first derivative shows the slope of the original function, whereas the graph of
the second derivative shows the slope of the first derivative. These graphs help us
identify a local maximum and minimum. By inspection of Fig. 5.2, when the first
derivative equals zero, there is a local maximum or a local minimum. Algebraically,
this is when

dy

dx
= 0

9x2 + 4x − 5 = 0.

Solving this quadratic in x we have

x = −b ± √
b2 − 4ac

2a

where a = 9, b = 4, c = −5:

x = −4 ± √
16 + 180

18

x1 = −1, x2 = 0.555

which confirms our earlier analysis. However, what we don’t know, without refer-
ring to the graphs, whether it is a minimum, or a maximum.



70 5 Higher Derivatives

Fig. 5.3 A function
containing a local maximum,
and its first derivative
(dashed)

Fig. 5.4 A function
containing a local minimum,
and its first derivative
(dashed)

5.3 Identifying a Local Maximum or Minimum

Figure 5.3 shows a function containing a local maximum of 5 when x = −1. Note
that as the independent variable x, increases from −2 towards 0, the slope of the
graph changes from positive to negative, passing through zero at x = −1. This is
shown in the function’s first derivative, which is the straight line passing through
the points (−2,6), (−1,0) and (0,−6). A natural consequence of these conditions
implies that the slope of the first derivative must be negative:

d2y

dx2
= −ve.

Figure 5.4 shows another function containing a local minimum of 5 when x =
−1. Note that as the independent variable x, increases from −2 towards 0, the slope
of the graph changes from negative to positive, passing through zero at x = −1. This
is shown in the function’s first derivative, which is the straight line passing through
the points (−2,−6), (−1,0) and (0,6). A natural consequence of these conditions
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implies that the slope of the first derivative must be positive:

d2y

dx2
= +ve.

We can now apply this observation to the original function for the two values of x,
x1 = −1, x2 = 0.555:

dy

dx
= 9x2 + 4x − 5

d2y

dx2
= 18x + 4

= 18 × (−1) = −18

= 18 × (0.555) = +10.

Which confirms that when x = −1 there is a local maximum, and when x = 0.555,
there is a local minimum, as shown in Fig. 5.2.

Let’s repeat this technique for

y = −3x3 + 9x

whose derivative is

dy

dx
= −9x2 + 9

and second derivative

d2y

dx2
= −18x

as shown in Fig. 5.5. For a local maximum or minimum, the first derivative equals
zero:

−9x2 + 9 = 0

which implies that x = ±1.
The sign of the second derivative determines whether there is a local minimum

or maximum.

d2y

dx2
= −18x

= −18 × (−1) = +ve

= −18 × (+1) = −ve

therefore, when x = −1 there is a local minimum, and when x = +1 there is a local
maximum, as confirmed by Fig. 5.5.
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Fig. 5.5 Graph of
y = −3x3 + 9x, its first
derivative y = −9x2 + 9
(short dashes) and its second
derivative y = −18x (long
dashes)

5.4 Derivatives and Motion

The first derivative of a simple function of x is its instantaneous slope, which may
be a linear function or some other function. Higher derivatives are the slopes of their
respective functions. For example, for the sine function

y = sinx

dy

dx
= cosx

d2y

dx2
= − sinx

d3y

dx3
= − cosx

d4y

dx4
= sinx.

A similar cycle emerges for the cosine function. However, when the independent
variable is time, higher derivatives can give the velocity and acceleration of an ob-
ject, where velocity is the rate of change of position with respect to time, and accel-
eration is the rate of change of velocity with respect to time.

Let

position = s(t)

then

velocity v = ds

dt

and

acceleration a = dv

dt
= d2s

dt2
.
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Fig. 5.6 The position of an
object falling under the pull
of gravity

Table 5.1 The height of an
object and distance travelled
at different times during its
fall

t d s(t)

0 0 20

0.5 −1.225 18.775

1 −4.9 15.1

1.5 −11.025 8.975

2.02 −20 0

For example, when an object is dropped from a height h0 close to the earth, it
experiences a downward acceleration of g = 9.8 m/s2, and falls a distance d :

d = −1

2
gt2.

Observe that a distance measured vertically upwards is positive, and a distance mea-
sured downwards is negative. Consequently, its instantaneous height is given by

s(t) = h0 − 1

2
gt2. (5.1)

Figure 5.6 shows the height of the object at different times during its fall, and Ta-
ble 5.1 gives corresponding values of t , d and s(t), with a starting height h0 = 20 m.

Differentiating (5.1) with respect to time gives the object’s instantaneous veloc-
ity v:

s(t) = h0 − 1

2
gt2

v = ds

dt
= −gt

(5.2)

and after 2.02 seconds, the object is travelling at approximately 19.8 m/s.
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Fig. 5.7 The position of an
object falling under the pull
of gravity with an initial
upward velocity of 6 m/s

Differentiating (5.2) with respect to time gives the instantaneous acceleration of
the object:

v = −gt

a = dv

dt
= d2s

dt2
= −g

and after 2.02 seconds, the object remains accelerating at a constant −9.8 m/s2.
If the object is subjected to an initial vertical velocity of v0, after t seconds it

travels a distance of v0t , which permits us to write a general equation for the object’s
height as

s(t) = h0 + v0t − 1

2
gt2. (5.3)

Differentiating (5.3) gives the instantaneous velocity:

v = ds

dt
= v0 − gt. (5.4)

Differentiating (5.4) gives the instantaneous acceleration:

a = dv

dt
= d2s

dt2
= −g.

If we set the initial velocity to v0 = 6 m/s and maintain the same starting height
h0 = 20, Fig. 5.7 shows the resulting motion.

5.5 Summary

In this chapter we have seen how a function can be repeatedly differentiated to reveal
higher derivatives. These in turn, can be used to identify points of local maxima and
minima. They can also be used to identify the velocity and acceleration of an object.



Chapter 6
Partial Derivatives

6.1 Introduction

In this chapter we investigate derivatives of functions with more than one indepen-
dent variable, and how such derivatives are annotated. We also explore the second-
order form of these derivatives.

6.2 Partial Derivatives

Up to this point, we have used functions with one independent variable, such as
y = f (x). However, we must be able to compute derivatives of functions with more
than one independent variable, such as y = f (u, v,w). The technique employed is
to assume that only one variable changes, whilst the other variables are held con-
stant. This means that a function can possess several derivatives—one for each inde-
pendent variable. Such derivatives are called partial derivatives and employ a new
symbol ∂ , which can be read as “partial dee”.

Given a function f (u, v,w), the three partial derivatives are defined as

∂f

∂u
= lim

h→0

f (u + h,v,w) − f (u, v,w)

h

∂f

∂v
= lim

h→0

f (u, v + h,w) − f (u, v,w)

h

∂f

∂w
= lim

h→0

f (u, v,w + h) − f (u, v,w)

h
.

For example, a function for the volume of a cylinder is

V (r,h) = πr2h

J. Vince, Calculus for Computer Graphics, DOI 10.1007/978-1-4471-5466-2_6,
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where r is the radius, and h is the height. Say we wish to compute the function’s
partial derivative with respect to r . First, the partial derivative is written

∂V

∂r
.

Second, we hold h constant, whilst allowing r to change. This means that the func-
tion becomes

V (r,h) = kr2 (6.1)

where k = πh. Thus the partial derivative of (6.1) with respect to r is

∂V

∂r
= 2kr

= 2πhr.

Next, by holding r constant, and allowing h to change, we have

∂V

∂h
= πr2.

Sometimes, for purposes of clarification, the partial derivatives identify the constant
variable(s):

(
∂V

∂r

)

h

= 2πhr

(
∂V

∂h

)

r

= πr2.

Partial differentiation is subject to the same rules for ordinary differentiation—we
just to have to remember which independent variable changes, and those held con-
stant. As with ordinary derivatives, we can compute higher-order partial derivatives.
For example, consider the function

f (u, v) = u4 + 2u3v2 − 4v3.

The first partial derivatives are

∂f

∂u
= 4u3 + 6u2v2

∂f

∂v
= 4u3v − 12v2

and the second-order partial derivatives are

∂2f

∂u2
= 12u2 + 12uv2
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∂2f

∂v2
= 4u3 − 24v.

Similarly, given

f (u, v) = sin(4u) · cos(5v)

the first partial derivatives are

∂f

∂u
= 4 cos(4u) · cos(5v)

∂f

∂v
= −5 sin(4u) · sin(5v)

and the second-order partial derivatives are

∂2f

∂u2
= −16 sin(4u) · cos(5v)

∂2f

∂v2
= −25 sin(4u) · cos(5v).

In general, given f (u, v) = uv, then

∂f

∂u
= v

∂f

∂v
= u

and the second-order partial derivatives are

∂2f

∂u2
= 0

∂2f

∂v2
= 0.

Similarly, given f (u, v) = u/v, then

∂f

∂u
= 1

v

∂f

∂v
= − u

v2

and the second-order partial derivatives are

∂2f

∂u2
= 0

∂2f

∂v2
= 2u

v3
.
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Finally, given f (u, v) = uv , then

∂f

∂u
= vuv−1

whereas, ∂f/∂v requires some explaining. First, given

f (u, v) = uv

taking natural logs of both sides, we have

lnf (u, v) = v lnu

and

f (u, v) = ev lnu.

Therefore,

∂f

∂v
= ev lnu lnu

= uv lnu.

The second-order partial derivatives are

∂2f

∂u2
= v(v − 1)uv−2

∂2f

∂v2
= uv ln2 u.

6.2.1 Visualising Partial Derivatives

Functions of the form y = f (x) are represented by a 2D graph, and the function’s
derivative f ′(x) represents the graph’s slope at any point x. Functions of the form
z = f (x, y) can be represented by a 3D surface, like the one shown in Fig. 6.1,
which is z(x, y) = 4x2 − 2y2. The two partial derivatives are

∂z

∂x
= 8x

∂z

∂y
= −4y

where ∂z/∂x is the slope of the surface in the x-direction, as shown in Fig. 6.2, and
∂z/∂y is the slope of the surface in the y-direction, as shown in Fig. 6.3.
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Fig. 6.1 Surface of
z = 4x2 − 2y2 using a
right-handed axial system
with a vertical z-axis

Fig. 6.2 ∂z/∂x describes the
slopes of these contour lines

The second-order partial derivatives are

∂2z

∂x2
= 8 = +ve

∂2z

∂y2
= −4 = −ve.

As ∂2z/∂x2 is positive, there is a local minimum in the x-direction, and as ∂2z/∂y2

is negative, there is a local maximum in the y-direction, as confirmed by Figs. 6.2
and 6.3.
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Fig. 6.3 ∂z/∂y describes the
slopes of these contour lines

6.2.2 Mixed Partial Derivatives

We have seen that, given a function of the form f (u, v), the partial derivatives ∂f/∂u

and ∂f/∂v provide the relative instantaneous changes in f and u, and f and v, re-
spectively, whilst the second independent variable remains fixed. However, nothing
prevents us from differentiating ∂f/∂u with respect to v, whilst keeping u constant:

∂

∂v

(
∂f

∂u

)

which is also written as

∂2f

∂v∂u

and is a mixed partial derivative. For example, let

f (u, v) = u3v4

then

∂f

∂u
= 3u2v4

and

∂2f

∂v∂u
= 12u2v3.

However, it should be no surprise that reversing the differentiation gives the same
result. Let

f (u, v) = u3v4
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then
∂f

∂v
= 4u3v3

and

∂2f

∂u∂v
= 12u2v3.

Generally, for continuous functions, we can write

∂2f

∂u∂v
= ∂2f

∂v∂u
.

For example, the formula for the volume of a cylinder is given by V (r,h) = πr2h,
where r and h are the cylinder’s radius and height, respectively. The mixed partial
derivative is computed as follows.

V (r,h) = πr2h

∂V

∂r
= 2πhr

∂2V

∂h∂r
= 2πr

or

V (r,h) = πr2h

∂V

∂h
= πr2

∂2V

∂r∂h
= 2πr.

As a second example, let

f (u, v) = sin(4u) · cos(3v)

then

∂f

∂u
= 4 cos(4u) · cos(3v)

∂2f

∂v∂u
= −12 cos(4u) · sin(3v)

or

∂f

∂v
= −3 sin(4u) · sin(3v)

∂2f

∂u∂v
= −12 cos(4u) · sin(3v).
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6.3 Chain Rule

In Chap. 4 we came across the chain rule for computing the derivatives of functions
of functions. For example, to compute the derivative of y = sin2 x we substitute
u = x2, then

y = u

dy

du
= cosu

= cosx2.

Next, we compute du/dx:

u = x2

du

dx
= 2x

and dy/dx is the product of the two derivatives using the chain rule:

dy

dx
= dy

du
· du

dx

= cosx2 · 2x

= 2x cosx2.

But say we have a function where w is a function of two variables x and y, which
in turn, are a function of u and v. Then we have

w = f (x, y)

x = r(u, v)

y = s(u, v).

With such a scenario, we have the following partial derivatives:

∂w

∂x
,

∂w

∂y

∂w

∂u
,

∂w

∂v

∂x

∂u
,

∂x

∂v

∂y

∂u
,

∂y

∂v
.
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These are chained together as follows:

∂w

∂u
= ∂w

∂x
· ∂x

∂u
+ ∂w

∂y
· ∂y

∂u
(6.2)

∂w

∂v
= ∂w

∂x
· ∂x

∂v
+ ∂w

∂y
· ∂y

∂v
. (6.3)

For example, given

w = f (2x + 3y)

x = r
(
u2 + v2)

y = s
(
u2 − v2)

then

∂w

∂x
= 2,

∂w

∂y
= 3

∂x

∂u
= 2u,

∂x

∂v
= 2v

∂y

∂u
= 2u,

∂y

∂v
= −2v

and plugging these into (6.2) and (6.3) we have

∂w

∂u
= ∂w

∂x

∂x

∂u
+ ∂w

∂y

∂y

∂u

= 2 × 2u + 3 × 2u

= 10u

∂w

∂v
= ∂w

∂x

∂x

∂v
+ ∂w

∂y

∂y

∂v

= 2 × 2v + 3 × (−2v)

= −2v.

Thus, when u = 2 and v = 1

∂w

∂u
= 20, and

∂w

∂v
= −2.
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6.4 Total Derivative

Given a function with three independent variables, such as w = f (x, y, t), where
x = g(t) and y = h(t), there are three primary partial derivatives

∂w

∂x
,

∂w

∂y
and

∂w

∂t

which show the differential change of w with x, y and t respectively. There are also
three derivatives

dx

dt
,

dy

dt
and

dt

dt

where dt/dt = 1. The partial and ordinary derivatives can be combined to create the
total derivative which is written

dw

dt
= ∂w

∂x

dx

dt
+ ∂w

∂y

dy

dt
+ ∂w

∂t
.

dw/dt measures the instantaneous change of w relative to t , when all three inde-
pendent variables change. For example, given

w = x2 + xy + y3 + t2

x = 2t

y = t − 1

then

dx

dt
= 2

dy

dt
= 1

∂w

∂x
= 2x + y = 4t + t − 1 = 5t − 1

∂w

∂y
= x + 3y2 = 2t + 3(t − 1)2 = 3t2 − 4t + 3

∂w

∂t
= 2t

dw

dt
= ∂w

∂x

dx

dt
+ ∂w

∂y

dy

dt
+ ∂w

∂t

= (5t − 1)2 + (
3t2 − 4t + 3

) + 2t = 3t2 + 8t + 1

and the total derivative equals

dw

dt
= 3t2 + 8t + 1

and when t = 1, dw/dt = 12.
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6.5 Summary

When a function has two or more independent variables, a partial derivative records
the instantaneous rate of change relative to one variable, while the others are held
constant. Like ordinary derivatives, it is also possible to take second-order and
higher partial derivatives.

Mixed partial derivatives arise when a partial derivative is further differentiated
relative to the second variable. The order makes no difference, which is why

∂2f

∂u∂v
= ∂2f

∂v∂u
.

The chain rule describes how partial derivatives are combined to create an overall
partial derivative:

∂w

∂u
= ∂w

∂x
· ∂x

∂u
+ ∂w

∂y
· ∂y

∂u

∂w

∂v
= ∂w

∂x
· ∂x

∂v
+ ∂w

∂y
· ∂y

∂v
.

Finally, we saw that the total derivative of a function is another function that shows
the total instantaneous change when all independent variables change simultane-
ously:

dw

dt
= ∂w

∂x

dx

dt
+ ∂w

∂y

dy

dt
+ ∂w

∂t
.



Chapter 7
Integral Calculus

7.1 Introduction

In this chapter I develop the idea that integration is the inverse of differentiation, and
examine standard algebraic strategies for integrating functions, where the derivative
is unknown; these include simple algebraic manipulation, trigonometric identities,
integration by parts, integration by substitution and integration using partial frac-
tions.

7.2 Indefinite Integral

In previous chapters we have seen that given a simple function, such as

y = sinx + 23

dy

dx
= cosx

and the constant term 23 disappears. Inverting the process, we begin with

dy = cosx dx

and integrate both sides:

y =
∫

cosx dx

= sinx + C.

An integral of the form
∫

f (x)dx

J. Vince, Calculus for Computer Graphics, DOI 10.1007/978-1-4471-5466-2_7,
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is known as an indefinite integral; and as we don’t know whether the original func-
tion contains a constant term, a constant C has to be included. Its value remains
undetermined unless we are told something about the original function. In this ex-
ample, if we are told that when x = π/2, y = 24, then

24 = sinπ/2 + C

= 1 + C

C = 23.

7.3 Standard Integration Formulae

In earlier chapters, I have included indefinite integrals for most of the derivatives we
have examined. For example, knowing that

d

dx
sinx = cosx

then the inverse operation is
∫

cosx dx = sinx + C.

For convenience, here they are again:
∫

xn dx = 1

n + 1
xn+1 + C; n �= −1

∫
ex dx = ex + C

∫
e−x dx = −e−x + C

∫
eax dx = 1

a
eax + C

∫
e−ax dx = −1

a
e−ax + C

∫
ax dx = 1

lna
ax + C; 0 < a �= 1

∫
a−x dx = − 1

lna
a−x + C

∫
sinax dx = −1

a
cosax + C

∫
cosax dx = 1

a
sinax + C
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∫
sec2 ax dx = 1

a
tanax + C

∫
cscax · cotax dx = −1

a
cscax + C

∫
secax · tanax dx = 1

a
secax + C

∫
csc2 ax dx = −1

a
cotax + C

∫
1√

1 − x2
dx = arcsinx + C

∫
1

1 + x2
dx = arctanx + C

∫
1

x
√

x2 − 1
dx = arcsec |x| + C

∫
sinhx dx = coshx + C

∫
coshx dx = sinhx + C

∫
sech2 x dx = tanhx + C

∫
1√

1 + x2
dx = arsinhx + C

∫
1√

x2 − 1
dx = arcoshx + C

∫
1

1 − x2
dx = artanhx + C.

All the above integrals, and many more, can be found on the internet and in most
books on calculus. However, the problem facing us now is how to integrate functions
that don’t fall into the above formats, which is what we consider next.

7.4 Integration Techniques

7.4.1 Continuous Functions

Functions come in all sorts of shapes and sizes, which is why we have to be very
careful before they are differentiated or integrated. If a function contains any form of
discontinuity, then it cannot be differentiated or integrated. For example, the square-
wave function shown in Fig. 7.1 cannot be differentiated as it contains discontinu-
ities. Consequently, to be very precise, we identify an interval [a, b], over which a
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Fig. 7.1 A discontinuous
square-wave function

function is analysed, and stipulate that it must be continuous over this interval. For
example, a and b define the upper and lower bounds of the interval such that

a ≤ x ≤ b

then we can say that for f (x) to be continuous

lim
h→0

f (x + h) = f (x).

Even this needs further clarification as h must not take x outside of the permitted
interval. So, from now on, we assume that all functions are continuous and can be
integrated without fear of singularities.

7.4.2 Difficult Functions

There are many functions that cannot be differentiated and represented by a finite
collection of elementary functions. For example, the derivative f ′(x) = sinx/x does
not exist, which precludes the possibility of its integration. Figure 7.2 shows this
function, and even though it is continuous, its derivative and integral can only be
approximated. Similarly, the derivative f ′(x) = √

x sinx does not exist, and also
precludes the possibility of its integration. Figure 7.3 shows this continuous func-
tion. So now let’s examine how most functions have to be rearranged to secure their
integration.

Let’s demonstrate through a series of examples how a function can be manipu-
lated to permit it to be integrated.

7.4.3 Trigonometric Identities

Sometimes it is possible to simplify the integrand by substituting a trigonometric
identity.
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Fig. 7.2 Graph of
y = (sinx)/x

Fig. 7.3 Graph of
y = √

x sinx

Example 1

Evaluate
∫

sin2 x dx.

The identity sin2 x = 1
2 (1 − cos 2x) converts the square function of x into a double-

angle representation:

∫
sin2 x dx = 1

2

∫
(1 − cos 2x)dx

= 1

2

∫
dx − 1

2

∫
cos 2x dx

= 1

2
x − 1

4
sin 2x + C.

Figure 7.4 shows the graphs of y = sin2 x and y = 1
2x − 1

4 sin 2x.
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Fig. 7.4 The graphs of
y = sin2 x (broken line) and
y = 1

2 x − 1
4 sin 2x

Fig. 7.5 The graphs of
y = cos2 x (broken line) and
y = 1

4 sin 2x + 1
2 x

Example 2

Evaluate
∫

cos2 x dx.

The identity cos2 x = 1
2 (cos 2x + 1) converts the square function of x into a double-

angle representation:

∫
cos2 x dx = 1

2

∫
(cos 2x + 1) dx

= 1

2

∫
cos 2x dx + 1

2

∫
dx

= 1

4
sin 2x + 1

2
x + C.

Figure 7.5 shows the graphs of y = cos2 x and y = 1
4 sin 2x + 1

2x.
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Fig. 7.6 The graphs of
y = tan2 x (broken line) and
y = tanx − x

Example 3

Evaluate
∫

tan2 x dx.

The identity sec2 x = 1 + tan2 x permits us to write

∫
tan2 x dx =

∫ (
sec2 x − 1

)
dx

=
∫

sec2 x dx −
∫

dx

= tanx − x + C.

Figure 7.6 shows the graphs of y = tan2 x and y = tanx − x.

Example 4

Evaluate
∫

sin 3x cosx dx.

The identity

2 sina cosb = sin(a + b) + sin(a − b)

converts the integrand’s product into the sum and difference of two angles:

sin 3x cosx = 1

2
(sin 4x + sin 2x)

∫
sin 3x cosx dx = 1

2

∫
sin 4x + sin 2x dx

= 1

2

∫
sin 4x dx + 1

2

∫
sin 2x dx
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Fig. 7.7 The graphs of
y = sin 3x cosx (broken line)
and y = − 1

8 cos 4x − 1
4 cos 2x

= −1

8
cos 4x − 1

4
cos 2x + C.

Figure 7.7 shows the graphs of y = sin 3x cosx and y = − 1
8 cos 4x − 1

4 cos 2x.

7.4.4 Exponent Notation

Radicals are best replaced by their equivalent exponent notation.

Example 5

Evaluate
∫

2
4
√

x
dx.

The 2 is moved outside the integral, and the integrand is converted into an exponent
form:

2
∫

1
4
√

x
dx = 2

∫
x− 1

4

= 2

[
x

3
4

3
4

]
+ C

= 2

[
4

3
x

3
4

]
+ C

= 8

3
x

3
4 + C.

Figure 7.8 shows the graphs of y = 2/ 4
√

x and y = 8x
3
4 /3.
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Fig. 7.8 The graphs of
y = 2/ 4

√
x (broken line) and

y = 8x
3
4 /3

7.4.5 Completing the Square

Where possible, see if an integrand can be simplified by completing the square.

Example 6

Evaluate
∫

1

x2 − 4x + 8
dx.

We have already seen that
∫

1

1 + x2
dx = arctanx + C

and it’s not too difficult to prove that
∫

1

a2 + x2
dx = 1

a
arctan

x

a
+ C.

Therefore, if we can manipulate an integrand into this form, then the integral will
reduce to an arctan result. The following needs no manipulation:

∫
1

4 + x2
dx = 1

2
arctan

x

2
+ C.

However, the original integrand has x2 − 4x + 8 as the denominator, which is re-
solved by completing the square:

x2 − 4x + 8 = 4 + (x − 2)2.

Therefore,
∫

1

x2 − 4x + 8
dx =

∫
1

22 + (x − 2)2
dx
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Fig. 7.9 The graphs of
y = 1/(x2 − 4x + 8) (broken
line) and y = (arctan x−2

2 )/2

Fig. 7.10 The graphs of
y = 1/(x2 + 6x + 10) (broken
line) and y = arctan(x + 3)

= 1

2
arctan

(
x − 2

2

)
+ C.

Figure 7.9 shows the graphs of y = 1/(x2 − 4x + 8) and y = (arctan x−2
2 )/2.

Example 7

Evaluate
∫

1

x2 + 6x + 10
dx.

∫
1

x2 + 6x + 10
dx =

∫
1

12 + (x + 3)2
dx

= arctan(x + 3) + C.

Figure 7.10 shows the graphs of y = 1/(x2 + 6x + 10) and y = arctan(x + 3).
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Fig. 7.11 The graphs of
y = arctanx/(1 + x2) (broken
line) and y = 1

2 (arctanx)2

7.4.6 The Integrand Contains a Derivative

Example 8

Evaluate
∫

arctanx

1 + x2
dx.

Knowing that

d

dx
arctanx = 1

1 + x2

let u = arctanx, then

du

dx
= 1

1 + x2

and
∫

arctanx

1 + x2
dx =

∫
udu

= u2

2
+ C

= 1

2
(arctanx)2 + C.

Figure 7.11 shows the graphs of y = arctanx/(1 + x2) and y = 1
2 (arctanx)2.

Example 9

Evaluate
∫

cosx

sinx
dx.
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Fig. 7.12 The graphs of
y = cosx/ sinx (broken line)
and y = ln | sinx|

Knowing that

d

dx
sinx = cosx

let u = sinx, then

du

dx
= cosx

and
∫

cosx

sinx
dx =

∫
1

u
du

= ln |u| + C

= ln | sinx| + C.

Figure 7.12 shows the graphs of y = cosx/ sinx and y = ln | sinx|.

Example 10

Evaluate
∫

sinx

cosx
dx.

Knowing that

d

dx
cosx = − sinx

let u = cosx, then

du

dx
= − sinx

du = − sinx dx
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Fig. 7.13 The graphs of
y = sinx/ cosx (broken line)
andy = ln | secx|

and
∫

sinx

cosx
dx =

∫
1

u
(−1) du

= − ln |u| + C

= − ln | cosx| + C

= ln | cosx|−1 + C

= ln | secx| + C.

Figure 7.13 shows the graphs of y = sinx/ cosx and y = ln | secx|.

7.4.7 Converting the Integrand into a Series of Fractions

Integration is often made easier by converting an integrand into a series of fractions.

Example 11

Evaluate
∫

4x3 + x2 − 8 + 12x cosx

4x
dx

∫
4x3 + x2 − 8 + 12x cosx

4x
dx =

∫
x2 dx +

∫
x

4
dx −

∫
2

x
dx +

∫
3 cosx dx

= x3

3
+ x2

8
− 2 ln |x| + 3 sinx + C.

Figure 7.14 shows the graphs of y = (4x3 +x2 −8+12x cosx)/4x and y = x3/3+
x2/8 − 2 ln |x| + 3 sinx.
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Fig. 7.14 The graphs of
y = (4x3 +x2 −8+12x cosx)/

4x (broken line) and
y = x3/3 + x2/8 − 2 ln |x| +
3 sinx

Fig. 7.15 The graphs of
y = (2 sinx + cosx + secx)/

cosx (broken line) and
y = 2 ln | secx| + x + tanx

Example 12

Evaluate
∫

2 sinx + cosx + secx

cosx
dx

∫
2 sinx + cosx + secx

cosx
dx = 2

∫
tanx dx +

∫
1dx +

∫
sec2 x dx

= 2 ln | secx| + x + tanx + C.

Figure 7.15 shows the graphs of y = (2 sinx + cosx + secx)/ cosx and y =
2 ln | secx| + x + tanx.
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7.4.8 Integration by Parts

Integration by parts is based upon the rule for differentiating function products
where

d

dx
uv = u

dv

dx
+ v

du

dx

and integrating throughout, we have

uv =
∫

uv′ dx +
∫

vu′ dx

which rearranged, gives

∫
uv′ dx = uv −

∫
vu′ dx.

Thus, if an integrand contains a product of two functions, we can attempt to integrate
it by parts.

Example 13

Evaluate
∫

x sinx dx.

In this case, we try the following:

u = x and v′ = sinx

therefore

u′ = 1 and v = C1 − cosx.

Integrating by parts:

∫
uv′ dx = uv −

∫
vu′ dx

∫
x sinx dx = x(C1 − cosx) −

∫
(C1 − cosx)(1) dx

= C1x − x cosx − C1x + sinx + C

= −x cosx + sinx + C.

Figure 7.16 shows the graphs of y = x sinx and y = −x cosx + sinx.
Note the problems that arise if we make the wrong substitution:

u = sinx and v′ = x
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Fig. 7.16 The graphs of
y = x sinx (broken line) and
y = −x cosx + sinx

therefore

u′ = cosx and v = x2

2
+ C1

Integrating by parts:
∫

uv′ dx = uv −
∫

vu′ dx

∫
x sinx dx = sinx

(
x2

2
+ C1

)
−

∫ (
x2

2
+ C1

)
cosx dx

which requires to be integrated by parts, and is even more difficult, which suggests
that we made the wrong substitution.

Example 14

Evaluate
∫

x cosx dx.

In this case, we try the following:

u = x and v′ = cosx

therefore

u′ = 1 and v = sinx + C1.

Integrating by parts:
∫

uv′ dx = uv −
∫

vu′ dx

∫
x cosx dx = x(sinx + C1) −

∫
(sinx + C1)(1) dx
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Fig. 7.17 The graphs of
y = x cosx (broken line) and
y = x sinx + cosx

= x sinx + C1x + cosx − C1x + C

= x sinx + cosx + C.

Figure 7.17 shows the graphs of y = x cosx and y = x sinx + cosx.

Example 15

Evaluate
∫

x2 cosx dx.

In this case, we try the following:

u = x2 and v′ = cosx

therefore

u′ = 2x and v = sinx + C1.

Integrating by parts:

∫
uv′ dx = uv −

∫
vu′ dx

∫
x2 cosx dx = x2(sinx + C1) − 2

∫
(sinx + C1)(x) dx

= x2 sinx + C1x
2 − 2C1

∫
x dx − 2

∫
x sinx dx

= x2 sinx + C1x
2 − 2C1

(
x2

2
+ C2

)
− 2

∫
x sinx dx

= x2 sinx − C3 − 2
∫

x sinx dx.
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Fig. 7.18 The graphs of
y = x2 cosx (broken line) and
y = x2 sinx+2x cosx−2 sinx

At this point we come across
∫

x sinx dx, which we have already solved:

∫
x2 cosx dx = x2 sinx − C3 − 2(−x cosx + sinx + C4)

= x2 sinx − C3 + 2x cosx − 2 sinx − C5

= x2 sinx + 2x cosx − 2 sinx + C.

Figure 7.18 shows the graphs of y = x2 cosx and y = x2 sinx + 2x cosx − 2 sinx.

Example 16

Evaluate
∫

x2 sinx dx.

In this case, we try the following:

u = x2 and v′ = sinx

therefore

u′ = 2x and v = − cosx + C1.

Integrating by parts:

∫
uv′ dx = uv −

∫
vu′ dx

∫
x2 sinx dx = x2(− cosx + C1) − 2

∫
(− cosx + C1)(x) dx

= −x2 cosx + C1x
2 − 2C1

∫
x dx + 2

∫
x cosx dx
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Fig. 7.19 The graphs of
y = x2 sinx (broken line) and
y = −x2 cosx+2x sinx+2 cosx

= −x2 cosx + C1x
2 − 2C1

(
x2

2
+ C2

)
+ 2

∫
x cosx dx

= −x2 cosx − C3 + 2
∫

x cosx dx.

At this point we come across
∫

x cosx dx, which we have already solved:
∫

x2 sinx dx = −x2 cosx − C3 + 2(x sinx + cosx + C4)

= −x2 cosx − C3 + 2x sinx + 2 cosx + C5

= −x2 cosx + 2x sinx + 2 cosx + C.

Figure 7.19 shows the graphs of y = x2 sinx and y = −x2 cosx +2x sinx +2 cosx.

Example 17 In future, we omit the integration constant, as it is cancelled out during
the integration calculation.

Evaluate
∫

x lnx dx.

In this case, we try the following:

u = lnx and v′ = x

therefore

u′ = 1

x
and v = 1

2
x2.

Integrating by parts:
∫

uv′ dx = uv −
∫

vu′ dx
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Fig. 7.20 The graphs of
y = x lnx (broken line) and
y = 1

2 x2 lnx − x2/4

∫
x lnx dx = 1

2
x2 lnx −

∫ (
1

2
x2

)
1

x
dx

= 1

2
x2 lnx − 1

2

∫
x dx

= 1

2
x2 lnx − x2

4
+ C.

Figure 7.20 shows the graphs of y = x lnx and y = 1
2x2 lnx − x2/4.

Example 18

Evaluate
∫ √

1 + x2 dx.

Although this integrand does not look as though it can be integrated by parts, if we
rewrite it as

∫ √
1 + x2(1) dx.

then we can use the formula.
Let

u =
√

1 + x2 and v′ = 1

therefore

u′ = x√
1 + x2

and v = x.

Integrating by parts:
∫

uv′ dx = uv −
∫

vu′ dx

∫ √
1 + x2 dx = x

√
1 + x2 −

∫
x2

√
1 + x2

dx.
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Fig. 7.21 The graphs of
y = √

1 + x2 (broken line)
and
y = 1

2 x
√

1 + x2 + 1
2 arsinhx

Now we simplify the right-hand integrand:

∫ √
1 + x2 dx = x

√
1 + x2 −

∫
(1 + x2) − 1√

1 + x2
dx

= x
√

1 + x2 −
∫

1 + x2

√
1 + x2

dx +
∫

1√
1 + x2

dx

= x
√

1 + x2 −
∫ √

1 + x2 dx + arsinhx + C1.

Now we have the original integrand on the right-hand side, therefore

2
∫ √

1 + x2 dx = x
√

1 + x2 + arsinhx + C1

∫ √
1 + x2 dx = 1

2
x
√

1 + x2 + 1

2
arsinhx + C.

Figure 7.21 shows the graphs of y = √
1 + x2 and y = 1

2x
√

1 + x2 + 1
2 arsinhx.

7.4.9 Integration by Substitution

Integration by substitution is based upon the chain rule for differentiating a function
of a function, which states that if y is a function of u, which in turn is a function of
x, then

dy

dx
= dy

du

du

dx
.

Example 19

Evaluate
∫

x2
√

x3 dx.
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This is easily solved by rewriting the integrand:
∫

x2
√

x3 dx =
∫

x
7
2 dx

= 2

9
x

9
2 + C.

However, introducing a constant term within the square-root requires integration by
substitution. For example,

Evaluate
∫

x2
√

x3 + 1dx.

First, we let u = x3 + 1, then

du

dx
= 3x2 or dx = du

3x2
.

Substituting u and dx in the integrand gives
∫

x2
√

x3 + 1dx =
∫

x2√u
du

3x2

= 1

3

∫ √
udu

= 1

3

∫
u

1
2 du

= 1

3
· 2

3
u

3
2 + C

= 2

9

(
x3 + 1

) 3
2 + C.

Figure 7.22 shows the graphs of y = x2
√

x3 + 1 and y = 2
9 (x3 + 1)

3
2 .

Example 20

Evaluate
∫

2 sinx cosx dx.

Integrating by substitution we let u = sinx, then

du

dx
= cosx or dx = du

cosx
.

Substituting u and dx in the integrand gives
∫

2 sinx cosx dx = 2
∫

u cosx
du

cosx
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Fig. 7.22 The graphs of
y = x2

√
x3 + 1 (broken line)

and y = 2
9 (x3 + 1)

3
2

Fig. 7.23 The graphs of
y = 2 sinx cosx (broken line)
and y = sin2 x

= 2
∫

udu

= u2 + C1

= sin2 x + C.

Figure 7.23 shows the graphs of y = 2 sinx cosx and y = sin2 x.

Example 21

Evaluate
∫

2ecos 2x sinx cosx dx.

Integrating by substitution, let u = cos 2x, then

du

dx
= −2 sin 2x or dx = − du

2 sin 2x
.
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Fig. 7.24 The graphs of
y = 2ecos 2x sinx cosx

(broken line) and
y = − 1

2 ecos 2x

Substituting a double-angle identity, u and du:
∫

2ecos 2x sinx cosx dx = −
∫

eu sin 2x
du

2 sin 2x

= −1

2

∫
eu du

= −1

2
eu + C

= −1

2
ecos 2x + C.

Figure 7.24 shows the graphs of y = 2ecos 2x sinx cosx and y = − 1
2ecos 2x .

Example 22

Evaluate
∫

cosx

(1 + sinx)3
dx.

Integrating by substitution, let u = 1 + sinx, then

du

dx
= cosx or dx = du

cosx
.

∫
cosx

(1 + sinx)3
dx =

∫
cosx

u3

du

cosx

=
∫

u−3 du

= −1

2
u−2 + C

= −1

2
(1 + sinx)−2 + C
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Fig. 7.25 The graphs of
y = cosx

(1+sinx)3 (broken line)

and y = − 1
2(1+sinx)2

= − 1

2(1 + sinx)2
+ C.

Figure 7.25 shows the graphs of y = cosx

(1+sinx)3 and y = − 1
2(1+sinx)2 .

Example 23

Evaluate
∫

sin 2x dx.

Integrating by substitution, let u = 2x, then

du

dx
= 2 or dx = du

2
∫

sin 2x dx = 1

2

∫
sinudu

= −1

2
cosu + C

= −1

2
cos 2x + C

Figure 7.26 shows the graphs of y = sin 2x and y = − 1
2 cos 2x.

7.4.10 Partial Fractions

Integration by partial fractions is used when an integrand’s denominator contains
a product that can be split into two fractions. For example, it should be possible to
convert

∫
3x + 4

(x + 1)(x + 2)
dx
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Fig. 7.26 The graphs of
y = sin 2x (broken line) and
y = − 1

2 cos 2x

into
∫

A

x + 1
dx +

∫
B

x + 2
dx

which individually, are easy to integrate. Let’s compute A and B:

3x + 4

(x + 1)(x + 2)
= A

x + 1
+ B

x + 2

3x + 4 = A(x + 2) + B(x + 1)

= Ax + 2A + Bx + B.

Equating constants and terms in x:

4 = 2A + B (7.1)

3 = A + B. (7.2)

Subtracting (7.2) from (7.1), gives A = 1 and B = 2. Therefore,
∫

3x + 4

(x + 1)(x + 2)
dx =

∫
1

x + 1
dx +

∫
2

x + 2
dx

= ln(x + 1) + 2 ln(x + 2) + C.

Figure 7.27 shows the graphs of y = 3x+4
(x+1)(x+2)

and y = ln(x + 1) + 2 ln(x + 2).

Example 24

Evaluate
∫

5x − 7

(x − 1)(x − 2)
dx.

Integrating by partial fractions:

5x − 7

(x − 1)(x − 2)
= A

x − 1
+ B

x − 2
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Fig. 7.27 The graphs of
y = 3x+4

(x+1)(x+2)
(broken line)

and
y = ln(x + 1) + 2 ln(x + 2)

Fig. 7.28 The graphs of
y = 5x−7

(x−1)(x−2)
(broken line)

and y = 2 ln(x − 1) +
3 ln(x − 2)

5x − 7 = A(x − 2) + B(x − 1)

= Ax + Bx − 2A − B.

Equating constants and terms in x:

−7 = −2A − B (7.3)

5 = A + B. (7.4)

Subtracting (7.3) from (7.4), gives A = 2 and B = 3. Therefore,

∫
3x + 4

(x − 1)(x − 2)
dx =

∫
2

x − 1
dx +

∫
3

x − 2
dx

= 2 ln(x − 1) + 3 ln(x − 2) + C.

Figure 7.28 shows the graphs of y = 5x−7
(x−1)(x−2)

and y = 2 ln(x − 1) + 3 ln(x − 2).
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Fig. 7.29 The graphs of

y = 6x2+5x−2
x3+x2−2x

(broken line)
and y = lnx + 2 ln(x + 2) +
3 ln(x − 1)

Example 25

Evaluate
∫

6x2 + 5x − 2

x3 + x2 − 2x
dx.

Integrating by partial fractions:

6x2 + 5x − 2

x3 + x2 − 2x
= A

x
+ B

x + 2
+ C

x − 1

6x2 + 5x − 2 = A(x + 2)(x − 1) + Bx(x − 1) + Cx(x + 2)

= Ax2 + Ax − 2A + Bx2 − Bx + Cx2 + 2Cx.

Equating constants, terms in x and x2:

−2 = −2A (7.5)

5 = A − B + 2C (7.6)

6 = A + B + C. (7.7)

Manipulating (7.5), (7.6) and (7.7): A = 1, B = 2 and C = 3, therefore,

∫
6x2 + 5x − 2

x3 + x2 − 2x
dx =

∫
1

x
dx +

∫
2

x + 2
dx +

∫
3

x − 1
dx

= lnx + 2 ln(x + 2) + 3 ln(x − 1) + C.

Figure 7.29 shows the graphs of y = 6x2+5x−2
x3+x2−2x

and y = lnx + 2 ln(x + 2) +
3 ln(x − 1).
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7.5 Summary

This chapter introduced a collection of strategies that should be considered when
integrating a function. It is far from complete, and one must expect that some inte-
grands will prove extremely difficult to solve, and software has to be used to reveal
a numerical solution.



Chapter 8
Area Under a Graph

8.1 Introduction

The ability to calculate the area under a graph is one of the most important discover-
ies of integral calculus. Prior to calculus, area was computed by dividing a zone into
very small strips and summing the individual areas. The accuracy of the result is
improved simply by making the strips smaller and smaller, taking the result towards
some limiting value. In this chapter I show how integral calculus provides a way to
compute the area between a function’s graph and the x- and y-axis.

8.2 Calculating Areas

Before considering the relationship between area and integration, let’s see how area
is calculated using functions and simple geometry.

Figure 8.1 shows the graph of y = 1, where the area A of the shaded zone is

A = x, x > 0.

For example, when x = 4, A = 4, and when x = 10, A = 10. An interesting obser-
vation is that the original function is the derivative of A:

dA

dx
= 1 = y.

Figure 8.2 shows the graph of y = 2x. The area A of the shaded triangle is

A = 1

2
base × height

= 1

2
x × 2x

= x2.

J. Vince, Calculus for Computer Graphics, DOI 10.1007/978-1-4471-5466-2_8,
© Springer-Verlag London 2013
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Fig. 8.1 Area of the shaded
zone is A = x

Fig. 8.2 Area of the shaded
zone is A = x2

Thus, when x = 4, A = 16. Once again, the original function is the derivative of A:

dA

dx
= 2x = y

which is no coincidence.
Finally, Fig. 8.3 shows a circle where x2 + y2 = r2, and the curve of the first

quadrant is described by the function

y =
√

r2 − x2, 0 ≥ x ≥ r.

The total area of the shaded zones is the sum of the two parts A1 and A2. To simplify
the calculations the function is defined in terms of the angle θ , such that

x = r sin θ
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Fig. 8.3 Graph of
y = √

r2 − x2

and

y = r cos θ.

Therefore,

A1 = r2θ

2

A2 = 1

2
(r cos θ)(r sin θ) = r2

4
sin 2θ

A = A1 + A2

= r2

2

(
θ + sin 2θ

2

)
.

Differentiating A with respect to θ :

dA

dθ
= r2

2
(1 + cos 2θ) = r2 cos2 θ.

But we want the derivative dA/dx, which requires the chain rule

dA

dx
= dA

dθ

dθ

dx

where
dx

dθ
= r cos θ

or
dθ

dx
= 1

r cos θ
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therefore

dA

dx
= r2 cos2 θ

r cos θ
= r cos θ = y

which is the equation for the quadrant. When θ = π/2, A equals the area of a quad-
rant of a unit-radius circle:

A = r2

2

(
θ + sin 2θ

2

)

= 1

2

(
π

2
+ sinπ

2

)

= 1

2

(
π

2

)

= π

4

and the area of a unit-radius circle is four quadrants: A = π .
Hopefully, these three examples provide strong evidence that the derivative of

the function for the area under a graph, equals the graph’s function:

dA

dx
= f (x)

and

dA = f (x)dx

which implies that

A =
∫

f (x)dx.

Now let’s prove this observation using Fig. 8.4, which shows a continuous func-
tion y = f (x). Next, we define a function A(x) to represent the area under the graph
over the interval [a, x]. δA is the area increment between x and x + δx, and

δA ≈ f (x) · δx.

We can also reason that

δA = A(x + δx) − A(x) ≈ f (x) · δx
and the derivative dA/dx is the limiting condition

dA

dx
= lim

δx→0

A(x + δx) − A(x)

δx
= lim

δx→0

f (x) · δx
δx

= f (x)

thus,

dA

dx
= f (x).
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Fig. 8.4 Relationship
between y = f (x) and A(x)

This can be rearranged as

dA = f (x)dx

whose antiderivative is

A(x) =
∫

f (x)dx.

The function A(x) computes the area over the interval [a, b] and is represented by

A(x) =
∫ b

a

f (x) dx

which is called the integral or definite integral.
Let’s assume that A(b) is the area under the graph of f (x) over the interval [0, b],

as shown in Fig. 8.5, and is written

A(b) =
∫ b

0
f (x)dx.

Similarly, let A(a) be the area under the graph of f (x) over the interval [0, a], as
shown in Fig. 8.6, and is written

A(a) =
∫ a

0
f (x)dx.

Figure 8.7 shows that the area of the shaded zone over the interval [a, b] is cal-
culated by

A = A(b) − A(a)

which is written

A =
∫ b

0
f (x)dx −

∫ a

0
f (x)dx
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Fig. 8.5 A(b) is the area
under the graph y = f (x),
0 ≥ x ≥ b

Fig. 8.6 A(a) is the area
under the graph y = f (x),
0 ≥ x ≥ a

and is contracted to

A =
∫ b

a

f (x) dx. (8.1)

The fundamental theorem of calculus states that the definite integral

∫ b

a

f (x) dx = F(b) − F(a)

where

F(a) =
∫

f (x)dx, x = a

F(b) =
∫

f (x)dx, x = b.
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Fig. 8.7 A(b) − A(a) is the
area under the graph
y = f (x), a ≥ x ≥ b

In order to compute the area beneath a graph of f (x) over the interval [a, b], we
first integrate the graph’s function

F(x) =
∫

f (x)dx

and then calculate the area, which is the difference

A = F(b) − F(a).

Let’s show how (8.1) is used in the context of the earlier three examples.

Example 1 Calculate the area over the interval [1,4] for y = 1, as shown in Fig. 8.8.
We begin with

A =
∫ 4

1
1dx.

Next, we integrate the function, and transfer the interval bounds employing the sub-
stitution symbol |41, or square brackets [ ]4

1. Using |41, we have

A = |41 x

= 4 − 1

= 3

or using [ ]4
1, we have

A = [x]4
1

= 4 − 1
= 3.

I will continue with square brackets.
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Fig. 8.8 Area under the
graph is

∫ 4
1 1dx

Fig. 8.9 Area under the
graph is

∫ 4
1 2x dx

Example 2 Calculate the area over the interval [1,4] for y = 2x, as shown in
Fig. 8.9. We begin with

A =
∫ 4

1
2x dx.

Next, we integrate the function and evaluate the area

A = [
x2]4

1

= 16 − 1

= 15.
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Example 3 Calculate the area over the interval [0, r] for y = √
r2 − x2, which is

the equation for a circle, as shown in Fig. 8.3. We begin with

A =
∫ r

0

√
r2 − x2 dx. (8.2)

Unfortunately, (8.2) contains a function of a function, which is resolved by substi-
tuting another independent variable. In this case, the geometry of the circle suggests

x = r sin θ

therefore,
√

r2 − x2 = r cos θ

and
dx

dθ
= r cos θ. (8.3)

However, changing the independent variable requires changing the interval for the
integral. In this case, changing 0 ≥ x ≥ r into θ1 ≥ θ ≥ θ2:

When x = 0, r sin θ1 = 0, therefore θ1 = 0.
When x = r , r sin θ2 = r , therefore θ2 = π/2.
Thus, the new interval is [0,π/2].
Finally, the dx in (8.2) has to be changed into dθ , which using (8.3) makes

dx = r cos θ dθ.

Now we are in a position to rewrite the original integral using θ as the independent
variable:

A =
∫ π

2

0
(r cos θ)(r cos θ) dθ

= r2
∫ π

2

0
cos2 θ dθ

= r2

2

∫ π
2

0
1 + cos 2θ dθ

= r2

2

[
θ + 1

2
sin 2θ

] π
2

0

= r2

2

[
π

2

]

= πr2

4

which makes the area of a full circle πr2.
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Fig. 8.10 The two areas
associated with a sine wave

8.3 Positive and Negative Areas

Area in the real world is always regarded as a positive quantity—no matter how it
is measured. In mathematics, however, area is often a signed quantity, and is deter-
mined by the clockwise or anticlockwise direction of vertices. As we generally use
a left-handed Cartesian axial system in calculus, areas above the x-axis are positive,
whilst areas below the x-axis are negative. This can be illustrated by computing the
area of the positive and negative parts of a sine wave.

Figure 8.10 shows a sine wave over one cycle, where the area above the x-axis is
labelled A1, and the area below the x-axis is labelled A2. These areas are computed
as follows.

A1 =
∫ π

0
sinx dx

= [− cosx]π0
= [1 + 1]
= 2.

However, A2 gives a negative result:

A2 =
∫ 2π

π

sinx dx

= [− cosx]2π
π

= [−1 − 1]
= −2.



8.4 Area Between Two Functions 127

Fig. 8.11 The accumulated
area of a sine wave

Fig. 8.12 Two areas between
y = x2 and y = x3

This means that the area is zero over the bounds 0 to 2π ,

A2 =
∫ 2π

0
sinx dx

= [− cosx]2π
0

= [−1 + 1]
= 0.

Consequently, one must be very careful using this technique for functions that are
negative in the interval under investigation.

Figure 8.11 shows a sine wave over the interval [0,π] and its accumulated area.

8.4 Area Between Two Functions

Figure 8.12 shows the graphs of y = x2 and y = x3, with two areas labelled A1 and
A2. A1 is the area trapped between the two graphs over the interval [−1,0] and A2
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is the area trapped between the two graphs over the interval [0,1]. These areas are
calculated very easily: in the case of A1 we sum the individual areas under the two
graphs, remembering to reverse the sign for the area associated with y = x3. For A2
we subtract the individual areas under the two graphs.

A1 =
∫ 0

−1
x2 dx −

∫ 0

−1
x3 dx

=
[
x3

3

]0

−1
−

[
x4

4

]0

−1

= 1

3
+ 1

4

= 7

12

A2 =
∫ 1

0
x2 dx −

∫ 1

0
x3 dx

=
[
x3

3

]1

0
−

[
x4

4

]1

0

= 1

3
− 1

4

= 1

12
.

Note, that in both cases the calculation is the same, which implies that when we
employ

A =
∫ b

a

[
f (x) − g(x)

]
dx

A is always the area trapped between f (x) and g(x) over the interval [a, b].
Let’s take another example, by computing the area A between y = sinx and the

line y = 0.5, as shown in Fig. 8.13. The horizontal line intersects the sine curve at
x = 30° and x = 150°, marked in radians as 0.5236 and 2.618 respectively.

A =
∫ 150°

30°
sinx dx −

∫ 5π/6

π/6
0.5dx

= [− cosx]150°
30° − 1

2
[x]5π/6

π/6

=
[√

3

2
+

√
3

2

]
− 1

2

[
5π

6
− π

6

]

= √
3 − π

3

≈ 0.685.
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Fig. 8.13 The area between
y = sinx and y = 0.5

Fig. 8.14 The areas between
the x-axis and the y-axis

8.5 Areas with the y-Axis

So far we have only calculated areas between a function and the x-axis. So let’s
compute the area between a function and the y-axis. Figure 8.14 shows the function
y = x2 over the interval [0,4], where A1 is the area between the curve and the x-
axis, and A2 is the area between the curve and y-axis. The sum A1 +A2 must equal
4 × 16 = 64, which is a useful control. Let’s compute A1.

A1 =
∫ 4

0
x2 dx

=
[
x3

3

]4

0

= 64

3

≈ 21.333
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which means that A2 ≈ 42.666. To compute A2 we construct an integral relative to

dy with a corresponding interval. If y = x2 then x = y
1
2 , and the interval is [0,16]:

A2 =
∫ 16

0
y

1
2 dy

=
[

2

3
y

3
2

]16

0

= 2

3
64

≈ 42.666.

8.6 Area with Parametric Functions

When working with functions of the form y = f (x), the area under its curve and
the x-axis over the interval [a, b] is

A =
∫ b

a

f (x) dx.

However, if the curve has a parametric form where

x = fx(t) and y = fy(t)

then we can derive an equivalent integral as follows.
First, we need to establish equivalent limits [α,β] for t , such that

a = fx(α) and b = fy(β).

Second, any point on the curve has corresponding Cartesian and parametric coordi-
nates:

x and fx(t)

y = f (x) and fy(t).

Third,

x = fx(t)

dx = f ′
x(t)dt

A =
∫ b

a

f (x) dx

=
∫ β

α

fy(t)f
′
x(t) dt
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Fig. 8.15 The parametric
functions for a circle

therefore

A =
∫ β

α

fy(t)f
′
x(t) dt. (8.4)

Let’s apply (8.4) using the parametric equations for a circle

x = −r cos(t)

y = r sin(t)

as shown in Fig. 8.15. Remember that the Cartesian interval is [a, b] left to right,
and the polar interval [α,β], must also be left to right, which is why x = −r cos t .
Therefore,

f ′
x(t) = r sin(t)

fy(t) = r sin(t)

A =
∫ β

α

fy(t)f
′
x(t) dt

=
∫ π

0
r sin(t)r sin(t) dt

= r2
∫ π

0
sin2(t) dt

= r2

2

∫ π

0
1 − cos(2t) dt

= r2

2

[
t + 1

2
sin(2t)

]π

0

= πr2

2

which makes the area of a full circle πr2.
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8.7 Bernhard Riemann

The German mathematician Bernhard Riemann (1826–1866) (pronounced “Ree-
man”) made major contributions to various areas of mathematics, including integral
calculus, where his name is associated with a formal method for summing areas and
volumes. Through the Riemann Sum, Riemann provides an elegant and consistent
notation for describing single, double and triple integrals when calculating area and
volume. I will show how the Riemann sum explains why the area under a curve is
the function’s integral. But first, I need to explain some incidental notation used in
the description.

8.7.1 Domains and Intervals

Consider any continuous, real-valued function f (x) which returns a meaningful
value for a wide range of x-values. For example, the function f (x) = x2 works
with any negative or positive x. This is called the domain of f (x) and written using
interval notation as (−∞,∞), where the parentheses () remind us not to include
−∞ and ∞ in the domain, as they have no definite value. When we wish to focus
upon a specific domain such as a ≤ x ≤ b, then we write [a, b], where the square
brackets remind us to include a and b in the domain. The function f (x) = √

x

returns a real value, so long as x ≥ 0, which means that its domain is [0,∞).
Some functions, like f (x) = 1/(x − 2) are sensitive to just one value—in this

case when x = 2—which creates a divide by zero. Therefore, there are two intervals:
(−∞,2) and (2,∞), which in set notation is written

(−∞,2) ∪ (2,∞).

8.7.2 The Riemann Sum

Figure 8.16 shows a function f (x) divided into eight equal sub-intervals where

Δx = b − a

8

and

a = x0 < x1 < x2 < · · · < x7 < x8 = b.

In order to compute the area under the curve over the interval [a, b], the interval
is divided into some large number of sub-intervals. In this case, eight, which is not
very large, but convenient to illustrate. Each sub-interval becomes a rectangle with
a common width Δx and a different height. The area of the first rectangular sub-
interval shown shaded, can be calculated in various ways. We can take the left-most
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Fig. 8.16 The graph of
function f (x) over the
interval [a, b]

height x0 and form the product x0Δx, or we can take the right-most height x1 and
form the product x1Δx. On the other hand, we could take the mean of the two
heights (x0 + x1)/2 and form the product (x0 + x1)Δx/2. A solution that shows
no bias towards either left, right or centre, is to let x∗

i be anywhere in a specific
sub-interval Δxi , then the area of the rectangle associated with the sub-interval is
f (x∗

i )Δxi , and the sum of the rectangular areas is given by

A =
8∑

i=1

f
(
x∗
i

)
Δxi.

Dividing the interval into eight equal sub-intervals will not generate a very accurate
result for the area under the graph. But increasing it to eight-thousand or eight-
million, will take us towards some limiting value. Rather than specify some specific
large number, it is common practice to employ n, and let n tend towards infinity,
which is written

A =
n∑

i=1

f
(
x∗
i

)
Δxi. (8.5)

The right-hand side of (8.5) is called a Riemann sum, of which there are many. For
the above description, I have assumed that the sub-intervals are equal, which is not
a necessary requirement.

If the number of sub-intervals is n, then

Δx = b − a

n

and the definite integral is defined as

∫ b

a

f (x) dx = lim
n→∞

n∑

i=1

f
(
x∗
i

)
Δxi.
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In later chapters, double and triple integrals are used to compute areas and vol-
umes, and require us to think carefully about their meaning and what they are doing.
Dividing space into sub-intervals, sub-areas or sub-volumes, provides a consistent
strategy for increasing our understanding of the subject.

8.8 Summary

In this chapter we have discovered the double role of integration. Integrating a func-
tion reveals another function, whose derivative is the function under investigation.
Simultaneously, integrating a function computes the area between the function’s
graph and the x- or y-axis. Although the concept of area in every-day life is an
unsigned quantity, within mathematics, and in particular calculus, area is a signed
quality, and one must be careful when making such calculations.



Chapter 9
Arc Length

9.1 Introduction

In previous chapters we have seen how calculus reveals the slope and the area under
a function’s graph, and it should be no surprise that it can be used to compute the arc
length of a continuous function. However, although the formula for the arc length
results in a simple integrand, it is not always easy to integrate, and other numeri-
cal techniques have to be used. In order to compute a function’s arc length using
integration, we first need to understand the mean-value theorem.

9.2 Lagrange’s Mean-Value Theorem

The French mathematician Joseph Louis Lagrange (1736–1813) is acknowledged
as being the first person to state the mean-value theorem:

A function f (x) that is continuous in the closed interval [a, b] and differ-
entiable in the open interval ]a, b[ has in this interval at least one value c such
that f ′(c) equals

f ′(c) = f (b) − f (a)

b − a
.

Figure 9.1 illustrates the geometry behind this theorem, where we see the graph
of a function f (x), which has no discontinuities over the interval [a, b]. Although
not shown, we assume that the function is differentiable outside the bounds of the
interval. The slope of the line (secant) connecting the points (a, f (a)) and (b, f (b))

is

f (b) − f (a)

b − a

and the mean-value theorem states that this slope equals the tangent at another
point c, where a < c < b. One can easily visualise this from Fig. 9.1 by tracking

J. Vince, Calculus for Computer Graphics, DOI 10.1007/978-1-4471-5466-2_9,
© Springer-Verlag London 2013
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Fig. 9.1 The secant’s slope
equals the tangent

the slope of f (x) over the interval [a, b]. At x = a, the slope, given by f ′(a), has
some positive value, whereas at x = b, the slope, given by f ′(b), has some negative
value. Clearly, the secant’s slope is less than f ′(a) and greater than f ′(b) and must
equal f ′(c), somewhere between a and b. Lagrange provided a rigorous mathemat-
ical proof for any function within the constraints of the theorem. We call upon this
theorem in the next section.

9.3 Arc Length

In every-day life we can measure the length of a curved surface by laying a flexi-
ble tape measure upon it and taking a reading. Given the graph of a mathematical
function, we can measure its length by reducing it to a chain of straight lines and
summing their individual lengths. Although this is rather crude, accuracy is im-
proved by making the straight lines increasingly shorter. This is the approach we
employ in the following analysis.

Figure 9.2 shows part of a curve divided into n intervals where any sample point
Pi has coordinates (xi, yi), where 0 < i < n. Using the theorem of Pythagoras, the
distance between two points Pi and Pi+1 is given by

Δs =
√

(xi+1 − xi)2 + (yi+1 − yi)2

=
√

(Δxi)2 + (Δyi)2

and the approximate length between P0 and Pn is given by

s ≈
n∑

i=1

√
(Δxi)2 + (Δyi)2.
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Fig. 9.2 The chain of
straight-line segments
approximates to the curve’s
length

As n tends towards infinity, then

s = lim
n→∞

n∑

i=1

√
(Δxi)2 + (Δyi)2

= lim
n→∞

n∑

i=1

√

1 +
(

Δyi

Δxi

)2

Δxi. (9.1)

Lagrange’s mean-value theorem states that there must be a value xj , such that
xi−1 < xj < xi , where

f ′(xj ) = f (xi) − f (xi−1)

xi − xi−1

= yi − yi−1

xi − xi−1

= Δyi

Δxi

.

Therefore, (9.1) becomes

s = lim
n→∞

n∑

i=1

√
1 + [

f ′(xj )
]2

Δxi

and over the x-interval [a, b] equals

s =
∫ b

a

√

1 +
(

dy

dx

)2

dx. (9.2)
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Fig. 9.3 A circle with
radius r

9.3.1 Arc Length of a Straight Line

Let’s test (9.2) by finding the length of the straight line y = 3x/4, over the interval
[0,4], which using simple geometry is 5.

dy

dx
= 3

4

therefore,

s =
∫ 4

0

√

1 +
(

dy

dx

)2

dx

=
∫ 4

0

√

1 +
(

3

4

)2

dx

=
∫ 4

0

√
25

16
dx

=
∫ 4

0

5

4
dx

=
[

5

4
x

]4

0

= 5.

9.3.2 Arc Length of a Circle

Figure 9.3 shows a semi-circle with radius r , where y = √
r2 − x2, therefore,

dy

dx
= 1

2

(
r2 − x2)−1/2 × (−2x)
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= −x√
r2 − x2

(
dy

dx

)2

= x2

r2 − x2
.

Integrating over the x-interval [−r, r], which is doubled to give the circle’s circum-
ference:

s = 2
∫ r

−r

√

1 +
(

dy

dx

)2

dx

= 2
∫ r

−r

√

1 + x2

r2 − x2
dx

= 2
∫ r

−r

√
r2

r2 − x2
dx

= 2r

∫ r

−r

dx√
r2 − x2

= 2r

[
arcsin

x

r

]r

−r

= 2r

(
π

2
+ π

2

)

= 2πr.

9.3.3 Arc Length of a Parabola

Let’s compute the arc length of the parabola

y = 0.5x2

over the interval [0,4], where dy/dx = x and

s =
∫ 4

0

√

1 +
(

dy

dx

)2

dx

=
∫ 4

0

√
1 + x2 dx.

To remove the radical we let x = tan θ where dx/dθ = sec2 θ and continue with an
indefinite integral. Therefore,
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s =
∫ √

1 + tan2 θ sec2 θ dθ

=
∫ √

sec2 θ sec2 θ dθ

=
∫

sec θ sec2 θ dθ.

Having removed the radical, we are now left with a product, which is integrated by
parts, by letting

u = sec θ and v′ = sec2 θ,

which means that

u′ = sec θ tan θ and v = tan θ.

Therefore,
∫

uv′ dθ = uv −
∫

vu′ dθ

∫
sec θ sec2 θ dθ = sec θ tan θ −

∫
tan θ sec θ tan θ dθ

= sec θ tan θ −
∫

sec θ tan2 θ dθ

= sec θ tan θ −
∫

sec θ
(
sec2 −1

)
dθ

= sec θ tan θ −
∫

sec3 dθ +
∫

sec θ dθ

2
∫

sec3 θ dθ = sec θ tan θ +
∫

sec θ dθ

∫
sec3 θ dθ = sec θ tan θ

2
+ 1

2

∫
sec θ dθ

= sec θ tan θ

2
+ 1

2
ln | sec θ + tan θ | + C.

Now let’s convert this result back to the original function where x = tan θ and
sec θ = √

1 + x2 and reintroduce the limits [0,4]:
sec θ tan θ

2
+ 1

2
ln | sec θ + tan θ | + C = 1

2
x
√

1 + x2 + 1

2
ln

∣∣
√

1 + x2 + x
∣∣ + C

therefore

∫ 4

0

√
1 + x2 dx =

[
1

2
x
√

1 + x2 + 1

2
ln

∣∣
√

1 + x2 + x
∣∣
]4

0
.
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Fig. 9.4 Graph of y = 0.5x2

Evaluating this result, we get

∫ 4

0

√
1 + x2 dx =

[
1

2
x
√

1 + x2 + 1

2
ln

∣∣
√

1 + x2 + x
∣∣
]4

0

=
(

2
√

17 + 1

2
ln |√17 + 4|

)
− 1

2
ln |1|

≈ 2
√

17 + 1

2
ln |√17 + 4|

≈ 8.2462 + 1.04735

≈ 9.294.

Figure 9.4 shows the graph of y = 0.5x2 over the interval [0,4], where the length of
the straight line joining (0,0) and (4,8) is

√
80 ≈ 8.94, which provides a minimum

value for the arc length. And by reducing the parabola to a chain of straight-line seg-
ments whose Δx = 0.25, the arc length equals 9.291, which confirms the accuracy
of the above answer.

Before moving on, here is an alternative solution to the original integral

∫ 4

0

√
1 + x2 dx.

To remove the radical we let x = sinh θ where dx/dθ = cosh θ and continue with
an indefinite integral. Therefore,

s =
∫ √

1 + sinh2 θ cosh θ dθ

=
∫ √

cosh2 θ cosh θ dθ

=
∫

cosh2 θ dθ.
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But 2 cosh2 θ = cosh 2θ + 1, therefore,

s = 1

2

∫
cosh 2θ + 1dθ

= 1

2

∫
cosh 2θ + 1

2

∫
dθ

= 1

4
sinh 2θ + 1

2
θ + C.

But sinh 2θ = 2 cosh θ sinh θ , therefore,

s = 1

2
cosh θ sinh θ + 1

2
θ + C. (9.3)

Apart from the constant C, (9.3) contains two parts. The first part is transformed
back to the original independent variable x by substituting sinh θ = x and cosh θ =√

1 + x2:

1

2
cosh θ sinh θ = 1

2
x
√

1 + x2.

The second part is transformed back to the original independent variable x as fol-
lows:

x = sinh θ

= 1

2

(
eθ − e−θ

)

2x = eθ − e−θ

2xeθ = (
eθ

)2 − 1
(
eθ

)2 − 2xeθ − 1 = 0

which is a quadratic in eθ , where a = 1, b = −2x, c = −1.Therefore,

eθ = −b ± √
b2 − 4ac

2a

= 2x ± √
4x2 + 4

2

= x ±
√

1 + x2.

However, as eθ > 1, therefore,

eθ = x +
√

1 + x2

θ = ln
∣∣x +

√
1 + x2

∣∣
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1

2
θ = 1

2
ln

∣∣x +
√

1 + x2
∣∣.

Combining these two parts together, and introducing a definite integral, we have

∫ 4

0

√
1 + x2 dx =

[
1

2
x
√

1 + x2 + 1

2
ln

∣∣
√

1 + x2 + x
∣∣
]4

0

which agrees with the first result.

9.3.4 Arc Length of y = x3/2

Let’s find the length of the curve y = x3/2 over the interval [0,4].
dy

dx
= 3

2
x1/2

therefore,

s =
∫ 4

0

√

1 +
(

dy

dx

)2

dx

=
∫ 4

0

√
1 + 9

4
x dx

=
∫ 4

0

(
1 + 9

4
x

)1/2

dx

Let u = 1 + 9
4x, then dx = 4

9 du.
The limits for u are:

x = 0, u = 1

x = 4, u = 10

s = 4

9

∫ 10

1
u1/2 du

= 4

9

[
2

3
u3/2

]10

1

≈ 8

27
(31.6227 − 1)

≈ 9.07.
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9.3.5 Arc Length of a Sine Curve

The square-root inside the integrand does present problems, and often makes it dif-
ficult to integrate the expression. For example, consider the apparently, simple task
of finding the arc length of y = sinx over the interval [0,2π].

dy

dx
= cosx

therefore,

s =
∫ 2π

0

√

1 +
(

dy

dx

)2

dx

=
∫ 2π

0

√
1 + cos2 x dx.

At this point, we have a problem, as it is not obvious how to integrate
√

1 + cos2 x.
However, it is what is called an elliptic integral of the second kind, which is beyond
the remit of this introductory book. Dividing the sine wave into a series of line seg-
ments, and using the theorem of Pythagoras, we discover that the length converges
as follows:

10° steps ≈ 7.6373564

5° steps ≈ 7.6396352

2° steps ≈ 7.6402736

1° steps ≈ 7.6403648.

9.3.6 Arc Length of a Hyperbolic Cosine Function

Finding the arc length of y = 3 cosh(x/3) over the interval [−3,3] turns out to be
much easier than y = sinx:

dy

dx
= sinh

x

3

therefore,

s =
∫ 3

−3

√

1 +
(

dy

dx

)2

dx

=
∫ 3

−3

√
1 + sinh2 x

3
dx
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Fig. 9.5 The graph of
y = 3 cosh(x/3)

=
∫ 3

−3

√
cosh2 x

3
dx

=
∫ 3

−3
cosh

x

3
dx

=
[

3 sinh
x

3

]3

−3

= 3
[
sinh 1 − sinh(−1)

]

= 3

[
e1 − e−1

2
− e−1 − e1

2

]

= 3
(
e1 − e−1)

≈ 7.05.

Figure 9.5 shows the graph of y = 3 cosh(x/3).

9.3.7 Arc Length of Parametric Functions

Parametric functions take the form

x = fx(t)

y = fy(t)

where fx and fy are independent functions, but share a common parameter t . In
order to compute the arc length of such a function we need to derive the derivative
dy/dx. The individual derivatives are dx/dt and dy/dt and can be combined to
produce dy/dx as follows
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dy

dx
= dy/dt

dx/dt

which means that (9.2) can be written as

s =
∫ b

a

√

1 +
(

dy/dt

dx/dt

)2

dx

=
∫ b

a

√
(dx/dt)2 + (dy/dt)2

(dx/dt)2
dx

=
∫ b

a

√(
dx

dt

)2

+
(

dy

dt

)2
dt

dx
dx

s =
∫ b

a

√(
dx

dt

)2

+
(

dy

dt

)2

dt. (9.4)

A similar analysis can be performed for 3D parametric curves, where we have

x = fx(t)

y = fy(t)

z = fz(t)

and

s =
∫ b

a

√(
dx

dt

)2

+
(

dy

dt

)2

+
(

dz

dt

)2

dt.

Let’s test (9.4) using the parametric equations for a unit-radius circle using

x = cos(t)

y = sin(t)

where 0 ≤ t ≤ 2π . Therefore,

dx

dt
= − sin(t)

dy

dt
= cos(t)

therefore,

s =
∫ 2π

0

√(
dx

dt

)2

+
(

dy

dt

)2

dt
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Fig. 9.6 3D parametric spiral

=
∫ 2π

0

√
sin2(t) + cos2(t) dt

=
∫ 2π

0
1dt

= [t]2π
0

= 2π

which makes the circumference of a unit-radius circle equal to 2π .
By adding a third function:

x = cos(t)

y = sin(t)

z = t

6

we create a 3D spiral as shown in Fig. 9.6, and its arc length is computed using

dx

dt
= − sin(t)

dy

dt
= cos(t)

dz

dt
= 1

6

where 0 ≤ t ≤ 4π . Therefore,

s =
∫ 4π

0

√(
dx

dt

)2

+
(

dy

dt

)2

+
(

dz

dt

)2

dt

=
∫ 4π

0

√
sin2 t + cos2 t + 1/36dt
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Fig. 9.7 The correspondence
between Cartesian and polar
coordinates

=
∫ 4π

0

√
37

36
dt

=
[√

37

36
t

]4π

0

≈ 12.74.

Thus the length of the spiral over two turns is ≈ 12.74.

9.3.8 Arc Length Using Polar Coordinates

Polar coordinates are sometimes more convenient than Cartesian coordinates when
describing functions involving trigonometric functions. For example, Fig. 9.7 shows
the correspondence between a point (x, y) and its polar coordinates (r, θ), where

x = r cos θ

y = r sin θ

and as r = f (θ), we have the product of two functions. Rewriting (9.4) in terms of
θ we have

s =
∫ θ2

θ1

√(
dx

dθ

)2

+
(

dy

dθ

)2

dθ. (9.5)

To find dx/dθ and dy/dθ we have to employ the product rule:

x = u(θ)v(θ)
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Fig. 9.8 Polar graph of
r = 2e0.2θ

dx

dθ
= u(θ)

dv

dθ
+ v(θ)

du

dθ

therefore,

x = r cos θ
(9.6)

dx

dθ
= −r sin θ + dr

dθ
cos θ

y = r sin θ
(9.7)

dy

dθ
= r cos θ + dr

dθ
sin θ

substituting (9.6) and (9.7) in (9.5):

s =
∫ θ2

θ1

√(
−r sin θ + dr

dθ
cos θ

)2

+
(

r cos θ + dr

dθ
sin θ

)2

dθ

=
∫ θ2

θ1

√

r2 sin2 θ +
(

dr

dθ

)2

cos2 θ + r2 cos2 θ +
(

dr

dθ

)2

sin2 θ dθ

=
∫ θ2

θ1

√

r2 +
(

dr

dθ

)2

dθ

therefore, the arc length is

s =
∫ θ2

θ1

√

r2 +
(

dr

dθ

)2

dθ.

Figure 9.8 shows the graph of a logarithmic spiral r = 2e0.2θ where 0 ≤ θ ≤ 2π ,
whose length is calculated as follows.

r = 2e0.2θ
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dr

dθ
= 0.4e0.2θ

s =
∫ 2π

0

√

r2 +
(

dr

dθ

)2

dθ

=
∫ 2π

0

√(
2e0.2θ

)2 + (
0.4e0.2θ

)2
dθ

=
∫ 2π

0

√
4e0.4θ + 0.16e0.4θ dθ

=
∫ 2π

0

√
4.16e0.4θ dθ

= √
4.16

∫ 2π

0
e0.2θ dθ

=
√

4.16

0.2

[
e0.2θ

]2π

0

=
√

4.16

0.2

(
e0.4π − e0)

≈
√

4.16

0.2
(3.5136 − 1)

≈ 25.634.

9.4 Summary

In this chapter we have computed the arc length of some functions using integration.
In particular, we have derived the following formulae:

For ordinary functions:

y = f (x)

s =
∫ b

a

√

1 +
(

dy

dx

)2

dx.

For 2D parametric functions:

x = fx(t)

y = fy(t)

s =
∫ b

a

√(
dx

dt

)2

+
(

dy

dt

)2

dt.



9.4 Summary 151

For 3D parametric functions:

x = fx(t)

y = fy(t)

z = fz(t)

s =
∫ b

a

√(
dx

dt

)2

+
(

dy

dt

)2

+
(

dz

dt

)2

dt.

When using polar coordinates:

r = f (θ)

s =
∫ θ2

θ1

√

r2 +
(

dr

dθ

)2

dθ.

However, all of the above integrands contain a radical, which sometimes makes
integration difficult, if not impossible, without resorting to numerical techniques or
employing software solutions.



Chapter 10
Surface Area

10.1 Introduction

In Chap. 8 I showed how to compute the area under a graph using integration, and
in this chapter I describe how single and double integration is used to compute
surface areas and regions bounded by functions. Also in this chapter, we come across
Jacobians, which are used to convert an integral from one coordinate system to
another. To start, let’s examine surfaces of revolution.

10.2 Surface of Revolution

A surface of revolution is a popular 3D modelling technique used in computer
graphics for creating objects such as wine glasses and vases, where a contour is
rotated about an axis. Integral calculus provides a way to compute the area of such
surfaces using

S = 2π

∫ b

a

f (x)

√

1 +
[

dy

dx

]2

dx (10.1)

where y = f (x) and is differentiable over the interval [a, b].
To derive (10.1), consider the scenario shown in Fig. 10.1, where points P and

Q are on a continuous curve generated by the function y = f (x). The curve over
the x-interval [a, b] is to be rotated 360° about the x-axis.

The coordinates of P and Q are (xi, yi) and (xi+1, yi+1) respectively, Δxi =
xi+1 − xi , and Δsi approximates to the arc length between P and Q:

Δsi ≈
√

1 + [
f ′(c)

]2
Δxi

where c is some x in the interval [a, b] satisfying Lagrange’s mean-value theorem.
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Fig. 10.1 The geometry to
create a surface of revolution

To compute the area ΔSi swept out by the line segment PQ when rotated 360°
about the x-axis, we use the mean radius ri

ri = yi+1 + yi

2

such that

ΔSi ≈ 2πriΔsi

≈ 2π

(
yi+1 + yi

2

)√
1 + [

f ′(c)
]2

Δxi.

As Δxi → 0, yi+1 ≈ yi ≈ f (c), therefore

ΔSi ≈ 2πf (c)

√
1 + [

f ′(c)
]2

Δxi.

Consequently, the total area swept by the arc about the x-axis is

S = lim
n→∞

n∑

i=1

2πf (c)

√
1 + [

f ′(c)
]2

Δxi

S = 2π

∫ b

a

f (x)

√

1 +
[

dy

dx

]2

dx.

(10.2)

Similarly, the total area swept by the arc about the y-axis is

S = 2π

∫ b

a

f (y)

√

1 +
[
dx

dy

]2

dy. (10.3)

Let’s use (10.2) and (10.3) with various functions.
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Fig. 10.2 Surface area of a
cylinder

10.2.1 Surface Area of a Cylinder

To compute the surface are of a cylinder we employ the geometry shown in Fig. 10.2,
where a straight horizontal line is rotated 360° about the x-axis. The function is
simply y = r , and the x-interval is [0, h]. As y = r , dy/dx = 0, and

S = 2π

∫ b

a

f (x)

√

1 +
[

dy

dx

]2

dx

= 2πr

∫ h

0
1dx

= 2πr[x]h0
= 2πrh

which is correct.

10.2.2 Surface Area of a Right Cone

To compute the surface area of a right cone we employ the function y = rx/h,
where r is the cone’s radius and h its height, as shown in Fig. 10.3. Therefore,

y = r

h
x

dy

dx
= r

h

s =
√

h2 + r2
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Fig. 10.3 The geometry used
to compute the surface area of
a right cone

S = 2π

∫ b

a

f (x)

√

1 +
[

dy

dx

]2

dx

= 2π

∫ h

0

r

h
x

√

1 + r2

h2
dx

= 2πr

h

∫ h

0
x

√
h2 + r2

h2
dx

= 2πr

h2

∫ h

0
x
√

h2 + r2 dx

= 2πrs

h2

∫ h

0
x dx

= 2πrs

h2

[
1

2
x2

]h

0

= 2πrs

h2

(
h2

2

)

= πrs

which is correct. Reversing the line’s slope to y = r(1 − x/h) as shown in Fig. 10.4
we have

y = r

(
1 − x

h

)

dy

dx
= − r

h

s =
√

h2 + r2
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Fig. 10.4 Surface area of a
right cone

Fig. 10.5 The surface of a
right cone created by
sweeping a line about the
x-axis

S = 2πr

∫ h

0

(
1 − x

h

)√

1 + r2

h2
dx

= 2πr

h

∫ h

0
(h − x)

√
h2 + r2

h
dx

= 2πrs

h2

[
hx − x2

2

]h

0

= 2πrs

h2

(
h2 − h2

2

)

= 2πrs

h2

h2

2

= πrs.

Figure 10.5 shows a view of the swept conical surface.
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Fig. 10.6 A unit semi-circle

Fig. 10.7 The surface of
revolution formed by
sweeping a semi-circle
through 360°

10.2.3 Surface Area of a Sphere

The surface area of a sphere is S = 4πr2, and is derived as follows.
Figure 10.6 shows a unit semi-circle and Fig. 10.7 shows the surface of revolution

when this is swept 360° about the x-axis. The equation of a circle is x2 + y2 = r2

over the interval [−r, r] therefore,

f (x) = y =
√

r2 − x2.

To find f ′(x), let

u = r2 − x2

du

dx
= −2x

y = √
u

dy

du
= 1

2
u−1/2 = 1

2
√

u
= 1

2
√

r2 − x2
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dy

dx
= dy

du

du

dx
= 1

2
√

r2 − x2
(−2x) = −x√

r2 − x2

which is substituted in (10.1):

S = 2π

∫ b

a

f (x)

√

1 +
[

dy

dx

]2

dx

= 2π

∫ r

−r

√
r2 − x2

√

1 +
[ −x√

r2 − x2

]2

dx

= 2π

∫ r

−r

√
r2 − x2

√

1 +
[

x2

r2 − x2

]
dx

= 2π

∫ r

−r

√
r2 − x2 r√

r2 − x2
dx

= 2πr

∫ r

−r

1dx

= 2πr[x]r−r

= 2πr(2r)

= 4πr2.

10.2.4 Surface Area of a Paraboloid

To compute the surface area of a paraboloid we rotate the parabola function y = x2

about the y-axis, as shown in Fig. 10.8.

y = x2

x = √
y

dx

dy
= 1

2
√

y

S = 2π

∫ b

a

f (y)

√

1 +
[
dx

dy

]2

dy

= 2π

∫ 1

0

√
y

√

1 +
[

1

2
√

y

]2

dy

= 2π

∫ 1

0

√
y

√

1 + 1

4y
dy
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Fig. 10.8 A parabola to be
rotated about the y-axis

= 2π

∫ 1

0

√
y

√
4y + 1

4y
dy

= 2π

∫ 1

0

√
y

√
4y + 1

2
√

y
dy

= π

∫ 1

0

√
4y + 1dy.

Let u = 4y + 1, therefore, du/dy = 4, or dy = du/4.
The limits for u are 1 and 5.

S = π

4

∫ 5

1

√
udu

= π

4

∫ 5

1
u1/2 du

= π

4

[
2

3
u3/2

]5

1

= π

6

(√
53 −

√
13

)

= π

6
(
√

125 − 1)

≈ 5.33.

Figure 10.9 shows a similar parabolic surface.
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Fig. 10.9 A parabolic
surface

10.3 Surface Area Using Parametric Functions

The standard equation to compute surface area is

S = 2π

∫ b

a

f (x)

√

1 +
[

dy

dx

]2

dx (10.4)

where the curve represented by f (x) is rotated about the x-axis. In order to convert
(10.4) to accept the following parametric equations

x = fx(t)

y = fy(t)

we need to first, establish equivalent limits [α,β] for t , such that

a = fx(α) and b = fy(β).

Second, any point on the curve has corresponding Cartesian and parametric coordi-
nates:

x and fx(t)

y = f (x) and fy(t).

Third, we compute dy/dx from the individual derivatives dx/dt and dy/dt :

dy

dx
= dy/dt

dx/dt

which means that (10.4) can be written as

S = 2π

∫ β

α

fy(t)

√

1 +
(

dy/dt

dx/dt

)2

dx

= 2π

∫ β

α

fy(t)

√
(dx/dt)2 + (dy/dt)2

(dx/dt)2
dx

= 2π

∫ β

α

fy(t)

√(
dx

dt

)2

+
(

dy

dt

)2
dt

dx
dx
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S = 2π

∫ β

α

fy(t)

√(
dx

dt

)2

+
(

dy

dt

)2

dt. (10.5)

For example, to create a unit-sphere from the parametric equations for a semi-circle
we have

x = fx(t) = − cos(t)

y = fy(t) = sin(t)

dx

dt
= sin(t)

dy

dt
= cos(t)

S = 2π

∫ β

α

fy(t)

√(
dx

dt

)2

+
(

dy

dt

)2

dt

= 2π

∫ π

0
sin(t)

√
sin2(t) + cos2(t) dt

= 2π

∫ π

0
sin(t) dt

= 2π
[− cos(t)

]Π
0

= 2π(1 + 1)

= 4π

which is correct.
To rotate about the y-axis (10.5) becomes

S = 2π

∫ β

α

fx(t)

√(
dx

dt

)2

+
(

dy

dt

)2

dt.

10.4 Double Integrals

Up to this point, we have only employed single integrals to compute area, or the arc
length of a function. But just as it is possible to differentiate a function several times,
it is also possible to integrate a function several times. For example, to integrate

z = f (x, y) = x2y

with respect to x over the interval [0,3], then we write
∫ 3

0
f (x, y) dx =

∫ 3

0
x2y dx
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=
[
x3

3
y

]3

0

= 9y.

But say we now want to integrate 9y with respect to y over the interval [0,2], then
we write

∫ 2

0
9y dy = 9

∫ 2

0
y dy

= 9

[
y2

2

]2

0

= 18.

These two individual steps can be combined in the form of a double integral:

∫ 2

0

∫ 3

0
x2y dx dy

where the inner integral is evaluated first, followed by the outer integral:

∫ 2

0

∫ 3

0
x2y dx dy =

∫ 2

0

[
x3

3

]3

0
y dy

= 9
∫ 2

0
y dy

= 9

[
y2

2

]2

0

= 18.

Note that reversing the integrals has no effect on the result:

∫ 3

0

∫ 2

0
x2y dy dx =

∫ 3

0

[
y2

2

]2

0
x2 dx

= 2
∫ 3

0
x2 dx

= 2

[
x3

3

]3

0

= 18.
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Let’s take another example,

∫ 2

0

∫ 2

1
3xy3 dx dy = 3

∫ 2

0

[
x2

2

]2

1
y3 dy

= 9

2

∫ 2

0
y3 dy

= 9

2

[
y4

4

]2

0

= 18.

10.5 Jacobians

In spite of a relatively short life, the German mathematician Carl Gustav Jacob Ja-
cobi (1804–1851) made a significant contribution to mathematics in the areas of
elliptic functions, number theory, differential equations and in particular, the Jaco-
bian matrix and determinant.

The Jacobian matrix is used in equations of differentials when changing vari-
ables, and its determinant, the Jacobian determinant, provides a scaling factor in
multiple integrals when changing the independent variable. I will provide three ap-
plications of the determinant, showing its use in one, two and three dimensions.

10.5.1 1D Jacobian

In order to integrate some integrals, we often have to substitute a new variable. For
example, to integrate

∫ 4

1

√
2x + 1dx

it is convenient to substitute u = 2x + 1, where du/dx = 2 or dx/du = 1/2, calcu-
late new limits for u: i.e. 3 and 9, and integrate with respect to u:

∫ 4

1

√
2x + 1dx =

∫ 9

3

√
u

dx

du
du

= 1

2

∫ 9

3

√
udu

= 1

2

∫ 9

3
u1/2 du
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= 1

2

[
2

3
u3/2

]9

3

= 1

3

[
93/2 − 33/2]

≈ 1

3
(27 − 5.2)

≈ 7.3.

The factor 1/2 is introduced because x changes half as fast as u. This scaling fac-
tor is known as a Jacobian, and is the derivative dx/du. We can also write it as
∂x/∂u, even though there is only one variable, as the partial notation keeps the Ja-
cobians consistent as we increase the number of dimensions. Furthermore, we are
only interested in the magnitude of the Jacobian, not its sign.

The scaling factor could also be another function. For example, to integrate

∫ 2

0

x

(x2 + 2)2
dx

it is convenient to substitute u = x2 + 2, where du/dx = 2x or dx/du = 1/2x,
calculate new limits for u: i.e. 2 and 6, and integrate with respect to u:

∫ 2

0

x

(x2 + 2)2
dx =

∫ 6

2

x

u2

dx

du
du

= 1

2x

∫ 6

2

x

u2
du

= 1

2

∫ 6

2

1

u2
du

= 1

2

∫ 6

2
u−2 du

= 1

2

[−1

u

]6

2

= 1

2

(
−1

6
+ 1

2

)

= 1

6
.

In this case, the scaling factor is 1/2x, which is the corresponding Jacobian, how-
ever, this time its value is a function of x.
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Fig. 10.10 The rectangle
C1C2C3C4 in Cartesian space

10.5.2 2D Jacobian

When defining double integrals using Cartesian coordinates, one normally ends up
with something like

∫ b

a

f (x, y) dx dy

where dx dy is regarded as the area of an infinitesimally small rectangle, and is often
represented by dA. But if we move from Cartesian coordinates to polar coordinates
and work with functions of the form g(r, θ), there is a temptation to substitute g(r, θ)

for f (x, y) and (dr dθ) for (dx dy), which is incorrect. The reason why, is that the
differential area of a rectangular region in Cartesian coordinates does not equal the
differential area of a corresponding region in polar coordinates. The Jacobian de-
terminant provides us with the adjustment necessary to carry out this substitution,
which in this case is r , and (dx dy) is replaced by (r dr dθ). I will describe a gen-
eral solution to this problem, which is found on various internet websites, but in
particular http://mathforum.org/dr.math/.

Figure 10.10 shows an infinitesimally small rectangle defined by the points
C1C2C3C4 in Cartesian coordinates. The vertical broken lines identify lines of con-
stant x, and the horizontal broken lines identify lines of constant y. The rectangle’s
width and height are dx and dy, respectively, which makes dA = dx dy. Similarly,
Fig. 10.11 shows an infinitesimally small rectangle defined by the points P1P2P3P4

in another coordinate system. The vertical broken lines identify lines of constant u,
and the horizontal broken lines identify lines of constant v. The rectangle’s width
and height are du and dv, respectively.

We now create two single-valued functions mapping parametric coordinates
(u, v) into Cartesian coordinates (x, y):

x = f (u, v) and y = g(u, v)

http://mathforum.org/dr.math/
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Fig. 10.11 The rectangle
P1P2P3P4 in parametric
space

where for every (x, y), there is a unique (u, v). There are also two single-
valued functions mapping Cartesian coordinates (x, y) into parametric coordinates
(u, v)

u = F(x, y) and v = G(x,y).

For example, given

u = x2 + y2 and v = x2 − y2

then

x =
√

u + v

2
and y =

√
u − v

2
.

Next, we take the points in uv-space and map them into their corresponding Carte-
sian points as shown in Fig. 10.12. The resulting shape depends entirely upon the
nature of the mapping functions f (u, v) and g(u, v); however, we anticipate that
they are curved in some way and bounded by contours of constant u and v.

If the area of this differential region equals the Cartesian rectangle dx dy, then
dx dy can be replaced by dudv. If not, we must compensate for any stretching or
contraction. The problem therefore, is to compute the area of this curvilinear rectan-
gle P1P2P3P4 in Fig. 10.12 and compare it to the area of the rectangle C1C2C3C4 in
Fig. 10.10. This is resolved by assuming that when this rectangle is infinitesimally
small, curves can be approximated by lines, and the area of the triangle P1P2P4 is
half the area of the required region. The area of the triangle is easily computed using
the determinant

1

2

∣∣∣∣∣∣

1 1 1
x1 x2 x4
y1 y2 y4

∣∣∣∣∣∣
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Fig. 10.12 The parametric
points P1P2P3P4 in Cartesian
space

where (x1, y1), (x2, y2) and (x4, y4) are the triangle’s vertices taken in anticlock-
wise sequence. Reversing the sequence, reverses the sign, which is why the absolute
value is added at the end of the proof. However, if we assume that the area of the
curvilinear region is twice the area of the triangle, then

Area of (P1P2P3P4) = dA1 =
∣∣∣∣∣∣

1 1 1
x1 x2 x4
y1 y2 y4

∣∣∣∣∣∣
. (10.6)

The next stage is to derive a function relating the differentials dx and dy with
du and dv, so that the triangle’s coordinates can be determined. These functions are
simply the total differentials for f and g:

x = f (u, v)

y = g(u, v)

dx = ∂x

∂u
du + ∂x

∂v
dv

dy = ∂y

∂u
du + ∂y

∂v
dv.

As with many mathematical solutions we can save ourselves a lot of work by
making a simple assumption, which in this case is that the coordinates of P1 are
(x1, y1), and the coordinates of P2 and P4 are of the form (x1 + dx, y1 + dy).

Starting with P2 with coordinates (x2, y2), then

x2 = x1 + dx

y2 = y1 + dy

x2 = x1 + ∂x

∂u
du + ∂x

∂v
dv
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y2 = y1 + ∂y

∂u
du + ∂y

∂v
dv

but as P1 and P2 lie on a contour where v is constant, dv = 0, which means that

x2 = x1 + ∂x

∂u
du

y2 = y1 + ∂y

∂u
du.

Next, P4 with coordinates (x4, y4), then

x4 = x1 + dx

y4 = y1 + dy

x4 = x1 + ∂x

∂u
du + ∂x

∂v
dv

y4 = y1 + ∂y

∂u
du + ∂y

∂v
dv

but as P1 and P4 lie on a contour where u is constant, du = 0, which means that

x4 = x1 + ∂x

∂v
dv

y4 = y1 + ∂y

∂v
dv.

We now plug the coordinates for P1, P2 and P4 into (10.6):

dA1 =

∣∣∣∣∣∣∣

1 1 1

x1 x1 + ∂x
∂u

du x1 + ∂x
∂v

dv

y1 y1 + ∂y
∂u

du y1 + ∂y
∂v

dv

∣∣∣∣∣∣∣
.

Rather than expand the determinant, let’s simplify it by subtracting the first column
from columns 2 and 3:

dA1 =

∣∣∣∣∣∣∣

1 0 0

x1
∂x
∂u

du ∂x
∂v

dv

y1
∂y
∂u

du
∂y
∂v

dv

∣∣∣∣∣∣∣

which becomes

dA1 =
∣∣∣∣∣

∂x
∂u

du ∂x
∂v

dv

∂y
∂u

du
∂y
∂v

dv

∣∣∣∣∣ .
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The determinant now contains the common term dudv, which is taken outside:

dA1 =
∣∣∣∣∣

∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣∣∣dudv.

Finally, we write this as

dA1 = ∂(x, y)

∂(u, v)
dudv = |J |dudv

where J is the Jacobian determinant

J =
∣∣∣∣∣

∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣∣∣ .

Therefore, for the region R, we can write

∫ ∫

R(x,y)

F (x, y) dx dy =
∫ ∫

R(u,v)

F
[
f (u, v), g(u, v)

]|J |dudv

Let’s evaluate J for converting Cartesian to polar coordinates, where

x = r cos θ

y = r sin θ

therefore,

∂x

∂r
= cos θ

∂x

∂θ
= −r sin θ

∂y

∂r
= sin θ

∂y

∂θ
= r cos θ

J =
∣∣∣∣
cos θ −r sin θ

sin θ r cos θ

∣∣∣∣

= r cos2 θ + r sin2 θ

= r

therefore, dx dy is replaced by r dr dθ .
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Fig. 10.13 Spherical polar
coordinates

10.5.3 3D Jacobian

The Jacobian determinant generalises to higher dimensions, and in three dimensions
becomes

J =

∣∣∣∣∣∣∣∣

∂x
∂u

∂x
∂v

∂x
∂w

∂y
∂u

∂y
∂v

∂y
∂w

∂z
∂u

∂z
∂v

∂z
∂w

∣∣∣∣∣∣∣∣
(10.7)

and is used in with triple integrals for calculating volumes. For example, in the next
chapter I will show how a triple integral using spherical coordinates is converted into
Cartesian coordinates using the appropriate Jacobian. For the moment, let’s evaluate
the Jacobian determinant. Figure 10.13 shows the convention used for converting
the point (x, y, z) into spherical polar coordinates (ρ,φ, θ). From Fig. 10.13 we see
that

x = ρ sinφ cos θ

y = ρ sinφ sin θ

z = ρ cosφ

the partial derivatives are

∂x

∂ρ
= sinφ cos θ,

∂x

∂φ
= ρ cosφ cos θ,

∂x

∂θ
= −ρ sinφ sin θ

∂y

∂ρ
= sinφ sin θ,

∂y

∂φ
= ρ cosφ sin θ,

∂y

∂θ
= ρ sinφ cos θ

∂z

∂ρ
= cosφ,

∂z

∂φ
= −ρ sinφ,

∂z

∂θ
= 0.
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Substituting these partials in (10.7):

J =
∣∣∣∣∣∣

sinφ cos θ ρ cosφ cos θ −ρ sinφ sin θ

sinφ sin θ ρ cosφ sin θ ρ sinφ cos θ

cosφ −ρ sinφ 0

∣∣∣∣∣∣

which expands to

det = ρ2 cos2 φ cos2 θ sinφ + ρ2 sin3 φ sin2 θ + ρ2 sin3 φ cos2 θ

+ ρ2 sinφ sin2 θ cos2 φ

= (
ρ2 sin3 φ + ρ2 sinφ cos2 φ

)(
sin2 θ + cos2 θ

)

= ρ2 sinφ
(
sin2 φ + cos2 φ

)

= ρ2 sinφ.

Normally, we take the absolute value of the Jacobian determinant, but in this case,
0 ≤ φ ≤ π , and ρ2 sinφ is always positive. Thus ρ2 sinφ dφ dθ replaces dx dy dz

in the appropriate integral.
When using cylindrical coordinates, where

x = ρ cosφ, y = ρ sinφ, z = z

the Jacobian is ρ:

J =

∣∣∣∣∣∣∣∣

∂x
∂u

∂x
∂v

∂x
∂w

∂y
∂u

∂y
∂v

∂y
∂w

∂z
∂u

∂z
∂v

∂z
∂w

∣∣∣∣∣∣∣∣

=
∣∣∣∣∣∣

cosφ −ρ sinφ 0
sinφ ρ cosφ 0

0 0 1

∣∣∣∣∣∣

= ρ cos2 φ + ρ sin2 φ

= ρ.

Thus the first three Jacobians are

J1 = ∂x

∂u
, J2 =

∣∣∣∣∣

∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣∣∣ , J3 =

∣∣∣∣∣∣∣∣

∂x
∂u

∂x
∂v

∂x
∂w

∂y
∂u

∂y
∂v

∂y
∂w

∂z
∂u

∂z
∂v

∂z
∂w

∣∣∣∣∣∣∣∣

which are often compressed to

J1 = ∂x

∂u
, J2 = ∂(x, y)

∂(u, v)
, J3 = ∂(x, y, z)

∂(u, v,w)
.
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Fig. 10.14 The projection of
z = f (x, y) on the xy-plane

10.6 Double Integrals for Calculating Area

I will now illustrate how double integrals are used for calculating area, and in the
next chapter, show how they are also used for calculating volume. To begin, look
what happens when we integrate f (x, y) = 1 over the x-interval [a, b], and the y-
interval [c, d]:

∫ d

c

∫ b

a

f (x, y) dx dy =
∫ d

c

∫ b

a

1dx dy

=
∫ d

c

[x]ba dy

=
∫ d

c

(b − a)dy

= (b − a)

∫ d

c

1dy

= (b − a)[y]dc
= (b − a)(d − c).

The result is the product of the x- and y-intervals, which is the region A formed
by a 3D surface projected onto the xy-plane, as shown in Fig. 10.14. The actual area
of the surface created by z = f (x, y) bounded by the points P1, P2, P3 and P4 is
given by

R =
∫ d

c

∫ b

a

√

1 +
(

∂z

∂x

)2

+
(

∂z

∂y

)2

dx dy. (10.8)

Let’s show how (10.8) is used to compute area. The first example is simple and
is shown in Fig. 10.15, where z = f (x, y) = y. The x-interval is [0,2] and the y-
interval is [0,1]. By inspection, the area equals 2

√
2. Calculating the partial deriva-
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Fig. 10.15 Part of the
surface z = y

tives, we have

∂z

∂x
= 0, and

∂z

∂y
= 1

therefore, (10.8) becomes

R =
∫ 1

0

∫ 2

0

√
1 + 02 + 12 dx dy

= √
2
∫ 1

0

∫ 2

0
1dx dy

= √
2
∫ 1

0
[x]2

0 dy

= 2
√

2
∫ 1

0
1dy

= 2
√

2[y]1
0

= 2
√

2.

The second example is shown in Fig. 10.16, where z = f (x, y) = 4x + 2y. The x-
interval is [0,1] and the y-interval is [0,1]. Calculating the partial derivatives, we
have

∂z

∂x
= 4, and

∂z

∂y
= 2

therefore, (10.8) becomes

R =
∫ 1

0

∫ 1

0

√
1 + 42 + 22 dx dy
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Fig. 10.16 Part of the
surface z = 4x + 2y

= √
21

∫ 1

0

∫ 1

0
1dx dy

= √
21

∫ 1

0
[x]1

0 dy

= √
21

∫ 1

0
1dy

= √
21[y]1

0

= √
21.

We can also calculate the area of the surface z = 4x + 2y contained within a
specific region on the xy-plane as follows. For example, say the region is defined by

x2 + y2 = 1

as shown in Fig. 10.17, we calculate the area as follows.
To begin, we use spherical polar coordinates instead of Cartesian coordinates,

incorporating the vital Jacobian, and rewrite (10.8) as

R =
∫ π/2

0

∫ 1

0

√

1 +
(

∂z

∂x

)2

+
(

∂z

∂y

)2

r dr dθ. (10.9)

The inner integral integrates over the polar radius interval [0,1], and the outer inte-
gral integrates over the polar angle θ [0,π/2]. Using the same equations, we have

R =
∫ π/2

0

∫ 1

0

√

1 +
(

∂z

∂x

)2

+
(

∂z

∂y

)2

r dr dθ

=
∫ π/2

0

∫ 1

0

√
1 + 42 + 22 r dr dθ
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Fig. 10.17 The graph of
z = 4x + 2y intersecting the
cylinder defined by
x2 + y2 = 1 on the xy-plane

= √
21

∫ π/2

0

∫ 1

0
r dr dθ

= √
21

∫ π/2

0
[r]1

0 dθ

= √
21

∫ π/2

0
1dθ

= √
21[θ ]π/2

0

=
√

21π

2

≈ 7.2.

For a third example, Fig. 10.18 shows part of a cone z = 4(x2 + y2) intersecting
a cylinder defined by x2 + y2 = 1 on the xy-plane. Let’s calculate the area of the
cylinder contained within the cylindrical region.

The partial derivatives are

∂z

∂x
= 4x√

x2 + y2
, and

∂z

∂y
= 4y√

x2 + y2

therefore, using (10.9) we have

R =
∫ π/2

0

∫ 1

0

√

1 +
(

∂z

∂x

)2

+
(

∂z

∂y

)2

r dr dθ

=
∫ π/2

0

∫ 1

0

√√√√1 +
(

4x√
x2 + y2

)2

+
(

4y√
x2 + y2

)2

r dr dθ
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Fig. 10.18 The graph of
z = 4(x2 + y2) intersecting
the cylinder defined by
x2 + y2 = 1 on the xy-plane

=
∫ π/2

0

∫ 1

0

√

1 + 16x2

x2 + y2
+ 16y2

x2 + y2
r dr dθ

= √
17

∫ π/2

0

∫ 1

0
r dr dθ

= √
17

∫ π/2

0
[r]1

0 dθ

= √
17

∫ π/2

0
1dθ

= √
17[θ ]π/2

0

=
√

17π

2

≈ 6.48.

The above examples have been carefully chosen so that the radical within the inte-
grand reduces to some numerical value. Unfortunately, this is not always the case,
and integration has to involve software or numerical methods.

10.7 Summary

In this chapter we have derived formulae to compute the surface area of contours
rotated about the x- and y-axis. In particular:

To rotate about the x-axis S = 2π

∫ b

a

f (x)

√

1 +
[

dy

dx

]2

dx



178 10 Surface Area

To rotate about the y-axis S = 2π

∫ b

a

f (y)

√

1 +
[
dx

dy

]2

dy.

If the function is described parametrically with x = fx(t) and y = fy(t) where
α ≤ t ≤ β then

To rotate about the x-axis S = 2π

∫ β

α

fy(t)

√(
dx

dt

)2

+
(

dy

dt

)2

dt

To rotate about the y-axis S = 2π

∫ β

α

fx(t)

√(
dx

dt

)2

+
(

dy

dt

)2

dt.

We have also seen how double integrals are used for calculating the area of surfaces
described by functions of the form z = f (x, y):

R =
∫ ∫

R

√

1 +
(

∂z

∂x

)2

+
(

∂z

∂y

)2

dx dy

and its spherical polar equivalent

R =
∫ ∫

R

√

1 +
(

∂z

∂x

)2

+
(

∂z

∂y

)2

r dr dθ.

Finally, we came across the Jacobian, which provides a vital parameter when chang-
ing the independent variable in an integral. The first three Jacobian determinants are

J1 = ∂x

∂u
, J2 =

∣∣∣∣∣

∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣∣∣ , J3 =

∣∣∣∣∣∣∣∣

∂x
∂u

∂x
∂v

∂x
∂w

∂y
∂u

∂y
∂v

∂y
∂w

∂z
∂u

∂z
∂v

∂z
∂w

∣∣∣∣∣∣∣∣

which are often written as

J1 = ∂x

∂u
, J2 = ∂(x, y)

∂(u, v)
, J3 = ∂(x, y, z)

∂(u, v,w)
.



Chapter 11
Volume

11.1 Introduction

In this chapter I introduce four techniques for calculating the volume of various
geometric objects. Two techniques are associated with solids of revolution, where
an object is cut into flat slices or concentric cylindrical shells and summed over the
object’s extent using a single integral. The third technique employs two integrals
where the first computes the area of a slice through a volume, and the second sums
these areas over the object’s extent. The fourth technique employs three integrals to
sum the volume of an object. We start with the slicing technique.

11.2 Solid of Revolution: Disks

In the previous chapter we saw that the area of a swept surface is calculated using

S = 2π

∫ b

a

f (x)

√

1 +
[

dy

dx

]2

dx.

Now let’s show that the contained volume is given by

V = π

∫ b

a

[
f (x)

]2
dx.

Figure 11.1 shows a contour described by y = f (x) rotated about the x-axis
creating a solid of revolution. If we imagine this object cut into a series of thin
slices, then the entire volume is the sum of the volumes of the individual slices.
However, if we cut a real solid of revolution into a collection of slices, it is highly
likely that each slice forms a right conical frustum, where the diameter of one side
differs slightly from the other side. Therefore, our numerical strategy assumes that
the slices are infinitesimally thin, and are thin disks with a volume equal to πr2Δx.
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Fig. 11.1 Dividing a volume
of revolution into small disks

Figure 11.1 shows a point P(xi, yi) on the contour touching a disk with radius f (xi)

and thickness Δx. Therefore, the volume of the disk is

Vi = π
[
f (xi)

]2
Δx.

Dividing the contour into n such disks, and letting n tend towards infinity, the entire
volume is given by

V = lim
n→∞

n∑

i=1

π
[
f (xi)

]2
Δx

which in integral form is

V = π

∫ b

a

[
f (x)

]2
dx. (11.1)

Let’s apply (11.1) to the same objects used for computing the surface area of sur-
faces of revolution.

11.2.1 Volume of a Cylinder

The geometry required to compute the volume of a cylinder is shown in Fig. 11.2,
where y = r—the radius—and h is the height. Therefore, using (11.1) we have

V = π

∫ b

a

[
f (x)

]2
dx

= π

∫ h

0
r2 dx

= πr2
∫ h

0
1dx
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Fig. 11.2 Computing the
volume of a cylinder

= πr2[x]h0
= πr2h.

11.2.2 Volume of a Right Cone

The geometry required to compute the volume of a right cone is shown in Fig. 11.3,
where y = rx/h. Therefore, using (11.1) we have

V = π

∫ b

a

[
f (x)

]2
dx

= π

∫ h

0

r2

h2
x2 dx

= πr2

h2

∫ h

0
x2 dx

= πr2

h2

[
1

3
x3

]h

0

= πr2

3h2
h3

= 1

3
πr2h.
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Fig. 11.3 Computing the
volume of a right cone

Fig. 11.4 Reversing the
orientation of a right cone

Reversing the orientation of the cone as shown in Fig. 11.4, such that y = r(1 −
x/h) we have

V = π

∫ b

a

[
f (x)

]2
dx

= π

∫ h

0
r2

(
1 − x

h

)2

dx

= πr2
∫ h

0

(
1 − x

h

)2

dx

= πr2
∫ h

0

(
1 − 2x

h
+ x2

h2

)
dx

= πr2
[
x − x2

h
+ x3

3h2

]h

0
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= πr2
(

h − h + h

3

)

= 1

3
πr2h.

We could have also integrated this as follows:

V = π

∫ b

a

[
f (x)

]2
dx

= π

∫ h

0
r2

(
1 − x

h

)2

dx

= πr2
∫ h

0

(
1 − x

h

)2

dx.

Substituting

u = 1 − x

h

where du/dx = −1/h, or dx = −hdu, and calculating new limits for u: [1,0], we
have

V = πr2
∫ 0

1
u2(−h)du

= πr2h

∫ 1

0
u2 du

= πr2h

[
u3

3

]1

0

= 1

3
πr2h.

11.2.3 Volume of a Right Conical Frustum

Figure 11.5 shows the geometry to compute the volume of a right conical frustum,
but this time the contour is rotated about the y-axis. The integral to achieve this is

V = π

∫ b

a

[
f (y)

]2
dy

and the contour to be rotated about the y-axis is

x =
(

1 − y

H

)
r1



184 11 Volume

Fig. 11.5 Computing the
volume of a right conical
frustum

with the integral for the volume:

V = πr2
1

∫ h

0

(
1 − y

H

)2

dy.

However, in reality, we will not know the value of H , but we would know the values
of r1 and r2. Therefore, with a little manipulation, the contour can be written as

x = hr1 + y(r2 − r1)

h

which confirms that when y = 0, x = r1, and when y = h, x = r2. Therefore, the
volume can be written in terms of r1, r2 and h as:

V = π

h2

∫ h

0

[
hr1 + y(r2 − r1)

]2
dy

= π

h2

∫ h

0

[
h2r2

1 + 2hr1y(r2 − r1) + y2(r2 − r1)
2]dy

= π

h2

[
h2r2

1y + hr1y
2(r2 − r1) + y3

3

(
r2

2 − 2r1r2 + r2
1

)]h

0

= π

h2

[
h3r2

1 + h3r1(r2 − r1) + h3

3

(
r2

2 − 2r1r2 + r2
1

)]

= πh

3

(
3r2

1 + 3r1r2 − 3r2
1 + r2

2 − 2r1r2 + r2
1

)

= πh

3

(
r2

1 + r2
2 + r1r2

)
.
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Fig. 11.6 A semi-circle used
to form a sphere

For example, when r1 = 2 cm, r2 = 4 cm and h = 3 cm, then

V = 3π

3

(
22 + 42 + 8

) = 28π cm3.

11.2.4 Volume of a Sphere

A sphere is easily created by rotating a semi-circle about the x- or y-axis, as shown
in Fig. 11.6, where the equation of the contour is given by

y2 = r2 − x2.

Using (11.1), the volume is

V = π

∫ r

−r

y2 dx

= π

∫ r

−r

(
r2 − x2)dx

= π

[
r2x − x3

3

]r

−r

= π

(
r3 − r3

3
+ r3 − r3

3

)

= 4

3
πr3.
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Fig. 11.7 An ellipse used to
form an ellipsoid

11.2.5 Volume of an Ellipsoid

Figure 11.7 shows part of an ellipse, which when rotated about the x-axis creates a
3D ellipsoid. Using (11.1) with the equation for an ellipse:

(
x

a

)2

+
(

y

b

)2

= 1

we have

y2 = b2

a2

(
a2 − x2)

where the ellipsoid’s volume is given by

V = π

∫ a

−a

y2 dx

= π
b2

a2

∫ a

−a

(
a2 − x2)dx

= π
b2

a2

[
a2x − x3

3

]a

−a

= π
b2

a2

(
a3 − a3

3
+ a3 − a3

3

)

= 4

3
πab2.

Figure 11.8 shows an ellipsoid.
Sweeping the ellipse about the y-axis creates another ellipsoid, with a different

volume given by

V = π

∫ b

−b

x2 dy
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Fig. 11.8 An ellipsoid

= π
a2

b2

∫ b

−b

(
b2 − y2)dy

= π
a2

b2

[
b2y − y3

3

]b

−b

= π
a2

b2

(
b3 − b3

3
+ b3 − b3

3

)

= 4

3
πa2b.

Observe that in both cases when a = b = r , the object is a sphere with a volume of
4πr3/3.

11.2.6 Volume of a Paraboloid

Figure 11.9 shows a parabola, which when rotated about the y-axis forms a 3D
paraboloid. To rotate about the y-axis the equation of the parabola is

x = √
y

where the y-interval is [0, h]. The volume of the paraboloid is

V = π

∫ h

0
x2 dy

= π

∫ h

0
y dy

= π

[
y2

2

]h

0

= πh2

2
.
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Fig. 11.9 A parabola, which
when rotated about the y-axis
creates a paraboloid

Fig. 11.10 A paraboloid

Fig. 11.11 A series of
concentric shells

If the x-interval is [0,1], then h = 1, and the volume is π/2. Figure 11.10 shows a
paraboloid.

11.3 Solid of Revolution: Shells

A solid of revolution can also be constructed from a collection of concentric cylin-
drical shells as shown in Fig. 11.11, where the object’s shape is defined by the
contour y = f (x) which is rotated about the y-axis. Figure 11.12 shows one of
the cylindrical shells with a radius of xi , f (xi) high and Δx thick. As the shell is
assumed to be infinitesimally thin, the volume of the shell is

Vi = 2πxif (xi)Δx.
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Fig. 11.12 Dimensions for
one concentric shell

Dividing the solid into n such shells, and letting n tend towards infinity, the entire
volume is given by

V = lim
n→∞

n∑

i=1

2πxif (xi)Δx

which in integral form is

V = 2π

∫ b

a

xf (x) dx. (11.2)

Similarly, when the contour is rotated about the x-axis, the integral is

V = 2π

∫ d

c

yf (y) dy. (11.3)

Let’s test (11.2) and (11.3) with various contours.

11.3.1 Volume of a Cylinder

Figure 11.13 shows the geometry to create a cylinder with radius r , and height h to
be rotated about the y-axis. Using (11.2) the volume is

V = 2π

∫ b

a

xf (x) dx

= 2π

∫ r

0
xhdx

= 2πh

[
x2

2

]r

0

= πr2h.
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Fig. 11.13 The geometry
used to create a cylinder

Fig. 11.14 The geometry
used to create a right cone

11.3.2 Volume of a Right Cone

Figure 11.14 shows a straight line represented by y = h(1 − x/r), which when
rotated about the y-axis sweeps out a right cone with radius r , and height h. Its
volume is given by

V = 2π

∫ r

0
xf (x)dx

= 2π

∫ r

0
xh

(
1 − x

r

)
dx

= 2πh

∫ r

0

(
x − x2

r

)
dx

= 2πh

[
x2

2
− x3

3r

]r

0
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Fig. 11.15 The geometry
used to create a hemisphere

= 2πh

(
r2

2
− r2

3

)

= πr2h

3
.

11.3.3 Volume of a Sphere

Figure 11.15 shows the geometry to create a hemisphere with radius r to be rotated
about the y-axis. As we have seen before, it is convenient to use polar coordinates
when dealing with circles and spheres, therefore, our equations are

x = r cos θ and y = r sin θ.

The original interval for x is [0, r], which for θ is [π/2,0]. Therefore,

dx

dθ
= −r sin θ or dx = −r sin θ dθ.

Using (11.2) the volume is

V = 2π

∫ r

0
xf (x)dx

= 2π

∫ 0

π/2
r cos θ r sin θ(−r sin θ) dθ

= −2πr3
∫ 0

π/2
cos θ sin2 θ dθ

= −2πr3
∫ 0

π/2
cos θ

(
1 − cos2 θ

)
dθ
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= −2πr3
∫ 0

π/2
cos θ dθ + 2πr3

∫ 0

π/2
cos3 θ dθ

= −2πr3[sin θ ]0
π/2 + 2πr3

∫ 0

π/2
cos3 θ dθ

= 2πr3 + 2πr3
∫ 0

π/2
cos3 θ dθ.

From Appendix B, we see that

∫
cos3 θ dθ = sin θ cos2 θ

3
+ 2

3
sin θ + C.

Therefore,

V = 2πr3 + 2πr3
[

sin θ cos2 θ

3
+ 2

3
sin θ

]0

π/2

= 2πr3 − 2πr3 2

3

= 2

3
πr3

which makes a sphere’s volume 4/3πr3.

11.3.4 Volume of a Paraboloid

We have already seen that the volume of a paraboloid using y = x2 is πh2/2, where
h is the height. The following shell method computes the volume surrounding the
paraboloid, which using (11.2) gives

V = 2π

∫ r

0
xf (x)dx

= 2π

∫ r

0
xx2 dx

= 2π

∫ r

0
x3 dx

= 2π

[
x4

4

]r

0

= πr4

2
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Fig. 11.16 The geometry
used to create a paraboloid

and if the x-interval is [0,1], then h = r2, and V = πh2/2. Which shows that the
volume of inner paraboloid equals the enclosing volume. In order to compute the
volume of a paraboloid using the shell technique, the parabola has to be inverted, as
shown in Fig. 11.16.

V = 2π

∫ r

0
xf (x)dx

= 2π

∫ r

0
x
(
h − x2)dx

= 2π

∫ r

0

(
xh − x3)dx

= 2π

[
x2h

2
− x4

4

]r

0

= 2π

(
r2h

2
− r4

4

)
.

But in our equation, h = r2, therefore,

V = 2π

(
h2

2
− h2

4

)

= πh2

2
.

11.4 Volumes with Double Integrals

Figure 11.17 illustrates a 3D function where z = f (x, y) over a region R defined by
the limits a ≤ x ≤ b and c ≤ y ≤ d , whose area is projected onto the xy-plane. If
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Fig. 11.17 A surface created
by z = f (x, y)

we consider a small rectangular tile on the xy-plane with dimensions Δx and Δy,
the volume of this column is approximately

ΔV ≈ f (xi, yj )Δx.Δy

where i and j identify a specific tile. Therefore, the total volume is

V ≈
∑

i,j

f (xi, yj )Δx.Δy.

In the limit

V = lim
Δx,Δy→0

∑

i,j

f (xi, yj )Δx.Δy

or in integral form:

V =
∫ b

a

∫ d

c

f (x, y) dx dy

where the inner integral is evaluated first, followed by the outer integral. The integral
can be written in two ways:

V =
∫ b

a

∫ d

c

f (x, y) dx dy =
∫ d

c

∫ b

a

f (x, y) dy dx. (11.4)

Let’s apply (11.4) in various scenarios.

11.4.1 Objects with a Rectangular Base

Example (Rectangular box) Figure 11.18 shows a rectangular box whose top sur-
face is defined by z = h, with base dimensions (x2 − x1) and (y2 − y1), where the
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Fig. 11.18 A rectangular box

enclosed volume is

V = h(x2 − x1)(y2 − y1).

This is confirmed by (11.4) as follows:

V =
∫ y2

y1

∫ x2

x1

f (x, y) dx dy

=
∫ y2

y1

∫ x2

x1

hdx dy

= h

∫ y2

y1

∫ x2

x1

1dx dy

= h

∫ y2

y1

[x]x2
x1

dy

= h

∫ y2

y1

(x2 − x1) dy

= h(x2 − x1)

∫ y2

y1

1dy

= h(x2 − x1)[y]y2
y1

= h(x2 − x1)(y2 − y1).

Example (Rectangular prism) Figure 11.19 shows a rectangular prism whose top
sloping surface is defined by z = h(1 − x/a), with base dimensions a and b, where
the enclosed volume is

V = hab

2
.
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Fig. 11.19 A prism

This is confirmed by (11.4) as follows:

V =
∫ y2

y1

∫ x2

x1

f (x, y) dx dy

=
∫ b

0

∫ a

0
h

(
1 − x

a

)
dx dy

= h

∫ b

0

∫ a

0

(
1 − x

a

)
dx dy

= h

∫ b

0

[
x − x2

2a

]a

0
dy

= h

∫ b

0

(
a − a

2

)
dy

= ha

2

∫ b

0
1dy

= ha

2
[y]b0

= hab

2
.

Example (Curved top) Figure 11.20 shows an object with a square base and curved
top defined by z = x2 + y. Given that the x- and y-intervals are [0,1], then the
enclosed volume is:

V =
∫ y2

y1

∫ x2

x1

f (x, y) dx dy
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Fig. 11.20 An object with a
curved top

=
∫ 1

0

∫ 1

0

(
x2 + y

)
dx dy

=
∫ 1

0

[
x3

3
+ xy

]1

0
dy

=
∫ 1

0

(
y + 1

3

)
dy

=
[
y2

2
+ y

3

]1

0

=
(

1

2
+ 1

3

)

= 5

6
.

11.4.2 Objects with a Circular Base

The same double integral works with polar coordinates, which enables us to com-
pute the volume of objects with a circular base. We have already seen that when
moving from Cartesian coordinates to polar coordinates, the appropriate Jacobian
must be included. In this case, the following substitutions are:

x = r cos θ

y = r sin θ

dx dy = r dr dθ

which transforms (11.4) into

V =
∫ b

a

∫ d

c

f (x, y) dx dy =
∫ a

0

∫ 2π

0
f (r cos θ, r sin θ)r dθ dr. (11.5)

Let’s test (11.5) using various objects.
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Fig. 11.21 Cross section of a
cylinder and intersecting
plane

Example (Cylinder) The volume of a cylinder with radius a and f (r cos θ, r sin θ) =
h is πa2h, which is confirmed as follows:

V =
∫ 2π

0

∫ a

0
f (r cos θ, r sin θ)r dr dθ

=
∫ 2π

0

∫ a

0
hr dr dθ

= h

∫ 2π

0

[
r2

2

]a

0
dθ

= a2h

2

∫ 2π

0
1dθ

= a2h

2
[θ ]2π

0

= πa2h.

Example (Truncated cylinder) The volume of a truncated cylinder is calculated by
forming the intersection of a cylinder and an oblique plane. However, it confirms
that the volume equals πa2h, because the cylinder’s height, h, is the z-axis. To
illustrate this, Fig. 11.21 shows a side projection of a cylinder intersecting the plane:
z = h − x/a. It is clear that the two cross-hatched triangles are equal, which is why
the volume is unchanged:

V =
∫ 2π

0

∫ a

0
f (r cos θ, r sin θ)r dr dθ

=
∫ 2π

0

∫ a

0

(
h − r cos θ

a

)
r dr dθ
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Fig. 11.22 A cross-section
of parabola intersecting a
cylinder

=
∫ 2π

0

∫ a

0

(
rh − r2 cos θ

a

)
dr dθ

=
∫ 2π

0

[
r2h

2
− r3 cos θ

3a

]a

0
dθ

=
∫ 2π

0

(
a2h

2
− a2 cos θ

3

)
dθ

= a2

6

∫ 2π

0
(3h − 2 cos θ) dθ

= a2

6
[3hθ − 2 sin θ ]2π

0

= a2

6
6πh

= πa2h.

If the radius is 2, and the height 4, then the volume is 16π . Taking this cylinder and
intersecting it with the parabola, z = 2 + x2/2 as shown in Fig. 11.22, the volume
reduces to 10π :

V =
∫ 2π

0

∫ 2

0

(
2 + x2

2

)
r dr dθ

=
∫ 2π

0

∫ 2

0

(
2 + r2 cos2 θ

2

)
r dr dθ

=
∫ 2π

0

∫ 2

0

(
2r + r3 cos2 θ

2

)
dr dθ
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=
∫ 2π

0

[
r2 + r4 cos2 θ

8

]2

0
dθ

=
∫ 2π

0

(
4 + 2 cos2 θ

)
dθ

=
∫ 2π

0
(5 + cos 2θ) dθ

=
[

5θ + sin 2θ

2

]2π

0

= 10π.

11.5 Volumes with Triple Integrals

The double integral for calculating area is
∫∫

R

f (x, y) dx dy or
∫∫

R

f (x, y) dA

where the region R is divided into a matrix of small areas represented by dx dy or
dA. The Riemann sum notation is

∫∫

R

f (x, y) dA = lim
n→∞

n∑

i=1

f (xi, yi)ΔAi.

This notation can be generalised into a triple integral for calculating volume:
∫∫∫

R

f (x, y, z) dx dy dz or
∫∫∫

R

f (x, y, z) dV

where the region R is divided into a matrix of small volumes represented by
dx dy dz or dV . The Riemann sum notation is

∫∫

R

f (x, y, z) dV = lim
n→∞

n∑

i=1

f (xi, yi, zi)ΔVi.

Let’s apply (11.6), where each integral identifies its interval of integration, to various
3D objects and calculate their volume.

V =
∫ b

a

∫ d

c

∫ f

e

f (x, y, z) dx dy dz. (11.6)
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Fig. 11.23 Cartesian
coordinates for a rectangular
box

11.5.1 Rectangular Box

Figure 11.23 shows the Cartesian coordinates for a rectangular box, with x-, y- and
z-intervals are (x2 − x1), (y2 − y1) and (z2 − z1) respectively, and whose volume is
calculated using (11.6) as follows.

V =
∫ b

a

∫ d

c

∫ f

e

f (x, y, z) dx dy dz

=
∫ z2

z1

∫ y2

y1

∫ x2

x1

1dx dy dz.

Together, the three integrals create the product of three lengths:

x2 − x1, y2 − y1, z2 − z1

which form the volume of the box:

V =
∫ z2

z1

∫ y2

y1

[x]x2
x1

dy dz

= (x2 − x1)

∫ z2

z1

∫ y2

y1

1dy dz

= (x2 − x1)

∫ z2

z1

[y]y2
y1 dz

= (x2 − x1)(y2 − y1)

∫ z2

z1

1dz

= (x2 − x1)(y2 − y1)[z]z2
z1

= (x2 − x1)(y2 − y1)(z2 − z1)

which confirms that the volume is the product of the box’s linear measurements.
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Fig. 11.24 The first quadrant
of a circular arc

11.5.2 Volume of a Cylinder

Figure 11.24 shows a quadrant of a cylinder with radius r , and height h. Its volume
is computed by dividing the enclosed space into cuboids with a volume ΔVi =
δx.δy.δz. In the limit, as δx, δy and δz tend towards zero, the entire volume is a
Riemann sum, and a triple integral:

V =
∫ h

0

∫ r

0

∫ √
r2−y2

0
1dx dy dz. (11.7)

The solution looks neater if the integrals are evaluated as follows

V =
∫ r

0

∫ √
r2−y2

0

∫ h

0
1dzdx dy

=
∫ r

0

∫ √
r2−y2

0
[z]h0 dx dy

= h

∫ r

0

∫ √
r2−y2

0
1dx dy

= h

∫ r

0
[x]

√
r2−y2

0 dy

= h

∫ r

0

√
r2 − y2 dy.

Let y = r sin θ , then

dy

dθ
= r cos θ or dy = r cos θ dθ
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and the interval for θ is [0,π/2], therefore,

V = h

∫ π/2

0

√
r2 − r2 sin2 θ r cos θ dθ

= r2h

∫ π/2

0
cos2 θ dθ

= r2h

2

∫ π/2

0
(1 + cos 2θ) dθ

= r2h

2

[
θ + 1

2
sin 2θ

]π/2

0

= πr2h

4
.

As there are four such quadrants, the cylinder’s volume is πr2h.
Cartesian coordinates are not best suited for this work—it is much more conve-

nient to employ cylindrical polar coordinates, where

x = ρ cosφ, y = ρ sinφ, z = z

and the Jacobian is ρ. Therefore, (11.7) is written to represent the entire volume as

V =
∫ h

0

∫ 2π

0

∫ r

0
ρ dρ dφ dz

which is integrated as follows:

V =
∫ h

0

∫ 2π

0

∫ r

0
ρ dρ dφ dz

=
∫ h

0

∫ 2π

0

[
ρ2

2

]r

0
dφ dz

= r2

2

∫ h

0

∫ 2π

0
1dφ dz

= r2

2

∫ h

0
[φ]2π

0 dz

= πr2
∫ h

0
1dz

= πr2[z]h0
= πr2h.



204 11 Volume

Fig. 11.25 Spherical polar
coordinates

11.5.3 Volume of a Sphere

Figure 11.25 shows how a sphere is defined using spherical polar coordinates, where
any point has the coordinates (ρ,φ, θ). In order to compute its volume ρ has the
interval [0, r], φ has the interval [0,π], and θ has the interval [0,2π]. Using the
Jacobian ρ2 sinφ, the volume is

V =
∫ 2π

0

∫ π

0

∫ r

0
ρ2 sinφ dρ dφ dθ

=
∫ 2π

0

∫ π

0

[
ρ3

3

]r

0
sinφ dφ dθ

= r3

3

∫ 2π

0

∫ π

0
sinφ dφ dθ

= r3

3

∫ 2π

0
[− cosφ]π0 dθ

= 2r3

3

∫ 2π

0
dθ

= 2r3

3
[θ ]2π

0

= 4πr3

3
.

11.5.4 Volume of a Cone

The triple integral provides another way to compute the volume of a cone, and is
best evaluated using cylindrical polar coordinates, rather than Cartesian coordinates.
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Fig. 11.26 A cone with
cylindrical coordinates

Figure 11.26 shows an inverted cone with height h and radius r . The equation for
the cone is given by

z = h

r

√
x2 + y2

where any point in the cone has a distance ρ = √
x2 + y2 from the z-axis. Thus

when ρ = r , z = h, and when ρ = 0, z = 0, which provides the cone’s shape. We
are only interested in the volume between z = 0 and z = h.

Thus the intervals for the three cylindrical coordinates are:

φ = [0,2π]
ρ = [0, r]

z =
[
h

r
ρ,h

]

and using the Jacobian ρ, the triple integral is

V =
∫ r

0

∫ 2π

0

∫ h

hρ/r

dφ dzρ dρ.

Integrating from the inside outwards, we have

V =
∫ r

0

∫ h

hρ/r

∫ 2π

0
dφ dzρ dρ

=
∫ r

0

∫ h

hρ/r

∫ 2π

0
dφ dzρ dρ

=
∫ r

0

∫ h

hρ/r

[φ]2π
0 dzρ dρ

= 2π

∫ r

0

∫ h

hρ/r

1dzρ dρ
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= 2π

∫ r

0
[z]hhρ/r ρ dρ

= 2π

∫ r

0

(
h − h

r
ρ

)
ρ dρ

= 2π

∫ r

0

(
hρ − h

r
ρ2

)
dρ

= 2π

[
hρ2

2
− hρ3

3r

]r

0

= 2π

(
hr2

2
− hr2

3

)

= 2π

6

(
3hr2 − 2hr2)

= πhr2

3
.

11.6 Summary

Integral calculus is a powerful tool for computing volume, whether it be using sin-
gle, double or triple integrals, and this chapter has covered four techniques using the
following formulae:

Slicing: Rotating f (x) about the x-axis:

V = π

∫ b

a

[
f (x)

]2
dx.

Slicing: Rotating f (y) about the y-axis:

V = π

∫ b

a

[
f (y)

]2
dy.

Shells: Rotating f (x) about the x-axis:

V = 2π

∫ b

a

xf (x) dx.

Shells: Rotating f (x) about the y-axis:

V = 2π

∫ b

a

yf (y) dy.
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Surface function f (x, y) using rectangular coordinates:

V =
∫ b

a

∫ d

c

f (x, y) dx dy =
∫ d

c

∫ b

a

f (x, y) dy dx.

Surface function f (x, y) using polar coordinates:

V =
∫ b

a

∫ d

c

f (x, y) dx dy =
∫ rmax

rmin

∫ θmax

θmin

f (r cos θ, r sin θ)r dθ dr.

Triple integral using rectangular coordinates:

V =
∫ b

a

∫ d

c

∫ f

e

f (x, y, z) dx dy dz.

Triple integral using cylindrical polar coordinates:

V =
∫ zmax

zmin

∫ φmax

φmin

∫ ρmax

ρmin

f (ρ,φ, z)ρ dρ dφ dz.



Chapter 12
Vector-Valued Functions

12.1 Introduction

So far, all the functions we have differentiated or integrated have been real-valued
functions, such as

f (x) = x + sinx

where x is a real value. However, as vectors play such an important role in physics,
mechanics, motion, etc., it is essential that we understand how to differentiate and
integrate vector-valued functions such as

p(t) = x(t)i + y(t)j + z(t)k

where i, j and k are unit basis vectors. This chapter introduces how such functions
are differentiated and integrated.

12.2 Differentiating Vector Functions

The position of a point P(x, y) on the plane is located using a vector:

p = xi + yj

or a point P(x, y, z) in 3D space as

p = xi + yj + zk.

If the point is moving and controlled by a time-based function with parameter t ,
then the position vector has the form:

p(t) = x(t)i + y(t)j

J. Vince, Calculus for Computer Graphics, DOI 10.1007/978-1-4471-5466-2_12,
© Springer-Verlag London 2013
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or in 3D space

p(t) = x(t)i + y(t)j + z(t)k.

The derivative of p(t) is another vector formed from the derivatives of x(t), y(t)

and z(t):

d

dt
p(t) = p′(t) = dx

dt
i + dy

dt
j

or in 3D:

d

dt
p(t) = p′(t) = dx

dt
i + dy

dt
j + dz

dt
k.

For example, given

p(t) = 10 sin t i + 5t2j + 20 cos tk

then

d

dt
p(t) = 10 cos t i + 10tj − 20 sin tk.

12.2.1 Velocity and Speed

As p(t) gives the position of a point at time t , its derivative gives the rate of change
of the position with respect to time, i.e. its velocity. For example, if p(t) is the
position of a point P at time t , P ’s change in position from t to t + Δt is

Δp = p(t + Δt) − p(t).

Dividing throughout by Δt :

Δp
Δt

= p(t + Δt) − p(t)

Δt
.

In the limit as Δt → 0 we have

d

dt
p(t) = v(t) = lim

Δt→0

p(t + Δt) − p(t)

Δt

which is the velocity of P at time t . Figure 12.1 shows this diagrammatically.
For example, if the functions controlling a particle are x(t) = 3 cos t , y(t) =

4 sin t and z(t) = 5t , then

p(t) = 3 cos t i + 4 sin tj + 5tk

and differentiating p(t) gives the velocity vector:

v(t) = −3 sin t i + 4 cos tj + 5k.
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Fig. 12.1 Velocity of P at
time t

Fig. 12.2 Position and
velocity vectors for P

Figure 12.2 shows a point P moving along a trajectory defined by its position vector
p(t). P ’s velocity is represented by v(t) which is tangential to the trajectory at P .

Given the position vector for a particle P ,

p(t) = x(t)i + y(t)j + z(t)k

the speed of P is given by

∣∣v(t)
∣∣ =

√(
dx

dt

)2

+
(

dy

dt

)2

+
(

dz

dt

)2

.

In the case of

v(t) = −3 sin t i + 4 cos tj + 5k

the speed is

∣∣v(t)
∣∣ =

√
(−3 sin t)2 + (4 cos t)2 + 52

=
√

9 sin2 t + 16 cos2 t + 25
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and at time t = 0
∣∣v(t)

∣∣ = √
16 + 25 = √

41

and at time t = π/2
∣∣v(t)

∣∣ = √
9 + 25 = √

34.

12.2.2 Acceleration

The acceleration of a particle with position vector p(t) is the second derivative of
p(t), or the derivative of P ’s velocity vector:

a(t) = p′′(t) = v′(t) = d2x

dt2
i + d2y

dt2
j + d2z

dt2
k.

In the case of

p(t) = 3 cos t i + 4 sin tj + 5tk

v(t) = −3 sin t i + 4 cos tj + 5k

a(t) = −3 cos t i − 4 sin tj.

12.2.3 Rules for Differentiating Vector-Valued Functions

Vector-valued functions are treated just like vectors, in that they can be added, sub-
tracted, scaled and multiplied, which leads to the following rules for their differen-
tiation:

d

dt

[
p(t) ± q(t)

] = d

dt
p(t) ± d

dt
q(t) addition and subtraction

d

dt

[
λp(t)

] = λ
d

dt
p(t) where λ ∈ R, scalar multiplier

d

dt

[
f (t)p(t)

] = f (t)p′(t) + f ′(t)p(t) function multiplier

d

dt

[
p(t) • q(t)

] = p(t) • q′(t) + p′(t) • q(t) dot product

d

dt

[
p(t) × q(t)

] = p(t) × q′(t) + p′(t) × q(t) cross product

d

dt

[
p
(
f (t)

)] = p′(f (t)
)
f ′(t) function of a function.
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12.3 Integrating Vector-Valued Functions

The integral of a vector-valued function is just its antiderivative, where each term is
integrated individually. For example, given

p(t) = x(t)i + y(t)i + z(t)k

then
∫ b

a

p(t) dt =
∫ b

a

x(t)idt +
∫ b

a

y(t)idt +
∫ b

a

z(t)kdt.

Similarly,
∫

p(t) dt =
∫

x(t)idt +
∫

y(t)idt +
∫

z(t)kdt + C.

Integrating the velocity vector used before:

v(t) = −3 sin t i + 4 cos tj + 5k

then
∫

v(t) dt =
∫

(−3 sin t i) dt +
∫

(4 cos tj) dt +
∫

(5k) dt + C

= −3
∫

(sin t i) dt + 4
∫

(cos tj) dt + 5
∫

(1k) dt + C

= 3 cos t i + 4 sin tj + 5tk + C.

We have already seen that

v(t) = d

dt
p(t)

a(t) = d

dt
v(t)

therefore,

p(t) =
∫

v(t) dt

v(t) =
∫

a(t) dt.

Example 1 If an object falls under the influence of gravity (9.8 m/s2) for 3 seconds,
its velocity at any time is given by

v(t) =
∫

9.8dt = 9.8t + C1.
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Assuming that its initial velocity is zero, then v(0) = 0, and C1 = 0. Therefore,

p(t) =
∫

9.8t dt = 9.8

2
t2 + C2 = 4.9t2 + C2.

But p(0) = 0, and C2 = 0, therefore,

p(t) = 4.9t2.

Consequently, after 3 seconds, the object has fallen 4.9 × 32 = 40.1 m.
If the object had been given an initial downward velocity of 1 m/s, then C1 = 1,

which means that

p(t) =
∫

(9.8t + 1) dt = 9.8

2
t2 + t + C2 = 4.9t2 + t + C2.

But p(0) = 0, and C2 = 0, therefore,

p(t) = 4.9t2 + t.

Consequently, after 3 seconds, the object has fallen 4.9 × 32 + 3 = 43.1 m.

Example 2 Compute an object’s position after 2 seconds if it is following a para-
metric curve such that its velocity is

v(t) = t2i + tj + t3k

starting at the origin at time t = 0.

p(t) =
∫

v(t) dt + C

=
∫ (

t2i + tj + t3k
)
dt + C

=
∫

t2i dt +
∫

tj dt +
∫

t3k dt + C

= t3

3
i + t2

2
j + t4

4
k + C.

But p(0) = 0i + 0j + 0k, therefore, the vector C = 0i + 0j + 0k, and

p(t) = t3

3
i + t2

2
j + t4

4
k.

Consequently, after 2 seconds, the object is at

p(2) = 23

3
i + 22

2
j + 24

4
k
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= 8

3
i + 2j + 4k

which is the point (8/3,2,4).

12.4 Summary

The calculus of vector-based functions is a large and complex subject, and in this
short chapter we have only covered the basic principles for differentiating and inte-
grating simple functions, which are summarised here.

Given a function of the form

p(t) = x(t)i + y(t)j + z(t)k

its derivative is
d

dt
p(t) = p′(t) = dx

dt
i + dy

dt
j + dz

dt
k

its integral is
∫

p(t) dt =
∫

x(t)i dt +
∫

y(t)i dt +
∫

z(t)k dt + C

and definite integral:

∫ b

a

p(t) dt =
∫ b

a

x(t)i dt +
∫ b

a

y(t)i dt +
∫ b

a

z(t)k dt.

If p(t) is a time-based position vector, its derivative is a velocity vector, and its
second derivative is an acceleration vector:

p(t) = x(t)i + y(t)j + z(t)k

v(t) = dx

dt
i + dy

dt
j + dz

dt
k

a(t) = d2x

dt2
i + d2y

dt2
j + d2z

dt2
k.

The magnitude of v(t) represents speed:

∣∣v(t)
∣∣ =

√(
dx

dt

)2

+
(

dy

dt

)2

+
(

dz

dt

)2

and for acceleration:

∣∣a(t)
∣∣ =

√(
d2x

dt2

)2

+
(

d2y

dt2

)2

+
(

d2z

dt2

)2

.



Chapter 13
Conclusion

Calculus is such a large subject, that everything one investigates leads to something
else, and one is tempted to write about it and explain how and why it works. Conse-
quently, when I started writing this book I had clear objectives about what to include
and what to leave out. Having reached this final chapter, I feel that I have achieved
this objective. There have been moments when I was tempted to include more top-
ics and more examples and turn this book into similar books on calculus that are
extremely large and daunting to open.

Hopefully, the topics I have included will inspire you to read other books on cal-
culus and consolidate your knowledge and understanding of this important branch
of mathematics.
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Appendix A
Limit of (sin θ)/θ

This appendix proves that

lim
θ→0

sin θ

θ
= 1, where θ is in radians.

From high-school mathematics we know that sin θ ≈ θ , for small values of θ . For
example:

sin 0.1 = 0.099833

sin 0.05 = 0.04998

sin 0.01 = 0.0099998

and

sin 0.1

0.1
= 0.99833

sin 0.05

0.05
= 0.99958

sin 0.01

0.01
= 0.99998.

Therefore, we can reason that in the limit, as θ → 0:

lim
θ→0

sin θ

θ
= 1.

Figure A.1 shows a graph of (sin θ)/θ , which confirms this result. However, this is
an observation, rather than a proof. So, let’s pursue a geometric line of reasoning.

From Fig. A.2 we see as the circle’s radius is unity, OA = OB = 1, and AC =
tan θ . As part of the strategy, we need to calculate the area of the triangle �OAB,
the sector OAB and the �OAC:
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Fig. A.1 Graph of (sin θ)/θ

Fig. A.2 Unit radius circle
with trigonometric ratios

Area of �OAB = �ODB + �DAB

= 1

2
cos θ sin θ + 1

2
(1 − cos θ) sin θ

= 1

2
cos θ sin θ + 1

2
sin θ − 1

2
cos θ sin θ

= sin θ

2

Area of sector OAB = θ

2π
π(1)2 = θ

2

Area of �OAC = 1

2
(1) tan θ = tan θ

2
.

From the geometry of a circle, we know that

sin θ

2
<

θ

2
<

tan θ

2

sin θ < θ <
sin θ

cos θ
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1 <
θ

sin θ
<

1

cos θ

1 >
sin θ

θ
> cos θ

and as θ → 0, cos θ → 1 and sin θ
θ

→ 1. This holds, even for negative values of θ ,
because

sin(−θ)

−θ
= − sin θ

−θ
= sin θ

θ
.

Therefore,

lim
θ→0

sin θ

θ
= 1.



Appendix B
Integrating cosn θ

We start with
∫

cosn x dx =
∫

cosx cosn−1 x dx.

Let u = cosn−1 x and v′ = cosx, then

u′ = −(n − 1) cosn−2 x sinx

and

v = sinx.

Integrating by parts:
∫

uv′ dx = uv −
∫

vu′ dx + C

∫
cosn−1 x cosx dx = cosn−1 x sinx +

∫
sinx(n − 1) cosn−2 x sinx dx + C

= sinx cosn−1 x + (n − 1)

∫
sin2 x cosn−2 x dx + C

= sinx cosn−1 x + (n − 1)

∫ (
1 − cos2 x

)
cosn−2 x dx + C

= sinx cosn−1 x + (n − 1)

∫
cosn−2 dx

− (n − 1)

∫
cosn x dx + C

n

∫
cosn x dx = sinx cosn−1 x + (n − 1)

∫
cosn−2 dx + C

∫
cosn x dx = sinx cosn−1 x

n
+ n − 1

n

∫
cosn−2 dx + C

where n is an integer, �= 0.
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224 B Integrating cosn θ

Similarly,

∫
sinn x dx = −cosx sinn−1 x

n
+ n − 1

n

∫
sinn−2 dx + C.

For example,
∫

cos3 x dx = sinx cos2 x

3
+ 2

3
sinx + C.
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A
Acceleration, 212
Antiderivative, 26, 31
Arc length, 135

circle, 138
cosh function, 144
parabola, 139
parametric function, 145
polar coordinates, 148
sine curve, 144
spiral, 147
straight line, 138

Area
between two functions, 127
circle, 118
cone, 155
cylinder, 155
double integrals, 162, 173
negative, 126
paraboloid, 159
parametric function, 130, 161
positive, 126
right cone, 155
sphere, 158
surface, 153
surface of revolution, 153
under a graph, 117
with the y-axis, 129

B
Binomial expansion, 22
Box

volume, 201

C
Cauchy, Augustin-Louis, 17
Chain rule, 82

Cone
surface area, 155
volume, 181, 190, 204

Continuity, 17
Continuous function, 5, 89
Cubic equation, 20
Cylinder

surface area, 155
volume, 180, 189, 202

D
Definite integral, 121
Dependent variable, 3
Derivative, 25, 31

graphical interpretation, 24
partial, 75
total, 84

Derivatives, 17
Derivatives and motion, 72
Differential, 25
Differentiating, 31

arccos function, 55
arccot function, 56
arccsc function, 56
arcosh function, 62
arcoth function, 64
arcsch function, 64
arcsec function, 56
arcsin function, 55
arctan function, 55
arsech function, 64
arsinh function, 62
artanh function, 62
cosech function, 61
cosh function, 59
cot function, 54
coth function, 61
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Differentiating (cont.)
csc function, 53
exponential functions, 47
function of a function, 33
function products, 37
function quotients, 41
hyperbolic functions, 58
implicit functions, 44
logarithmic functions, 49
periodic functions, 12
sec function, 53
sech function, 61
sine function, 35
sinh function, 59
sums of functions, 32
tan function, 52
tanh function, 59
trigonometric functions, 51
vector functions, 209

Differentiation
partial, 76

Discontinuous function, 5
Domain, 132
Double integrals, 162

volume, 193

E
Ellipsoid

volume, 186

F
Function, 3, 22

continuous, 5, 89
cubic, 20
differentiation, 12
discontinuous, 5
integration, 12
linear, 6
periodic, 7
polynomial, 7
quadratic, 19
rate of change, 8
real-valued, 132
second derivative, 71
slope, 9
vector-valued, 209

Function of a function, 8
differentiating, 33

Fundamental theorem of calculus,
122

H
Higher derivatives, 67

I
Indefinite integral, 87
Independent variable, 3
Infinitesimals, 17
Integral

definite, 121
Integrating

arccos function, 55
arccot function, 56
arccsc function, 56
arcosh function, 63
arcoth function, 65
arcsch function, 64
arcsec function, 56
arcsin function, 55
arctan function, 55
arsech function, 64
arsinh function, 63
artanh function, 64
cot function, 54
csc function, 53
exponential function, 49
logarithmic function, 50
sec function, 53
tan function, 52
vector-valued functions, 213

Integration, 26
by parts, 101
by substitution, 107
completing the square, 95
difficult functions, 90
integrand contains a derivative, 97
partial fractions, 111
radicals, 94
techniques, 89
trigonometric identities, 90

Interval, 132

J
Jacobi, Carl Gustav Jacob, 164
Jacobian, 164
Jacobian determinant, 164
Jacobian matrix, 164

L
Lagrange, Joseph Louis, 135
Lagrange’s Mean-Value Theorem, 135
Limits, 17, 22
Linear function, 6

M
Maxima, 70
Mean-value theorem, 135
Minima, 70
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Mixed partial derivative, 80

P
Paraboloid

area, 159
volume, 187, 192

Parametric function
area, 161

Partial derivative
chain rule, 82
first, 77
mixed, 80
second, 77
visualising, 78

Partial derivatives, 75
Pascal’s triangle, 22
Periodic function, 7
Polynomial function, 7

Q
Quadratic function, 19

R
Riemann, Bernhard, 132
Riemann sum, 132
Right cone

surface area, 155
volume, 181, 190

Robinson, Abraham, 17

S
Second derivative, 71
Sine, differentiating, 35
Slope of a function, 9
Solid of revolution

disk method, 179

shell method, 188
Speed, 210
Sphere

area, 158
volume, 185, 191, 204

Surface area, 153
Surface of revolution, 153

T
Total derivative, 84
Triple integral

volume, 200

V
Variable

dependent, 3
independent, 3

Vector-valued function, 209
Velocity, 210
Volume, 179

box, 194, 201
cone, 181, 190, 204
cylinder, 180, 189, 202
double integrals, 193
ellipsoid, 186
paraboloid, 187, 192
prism, 195
right cone, 181, 190
right conical frustum, 183
solid of revolution, 179
sphere, 185, 191, 204
triple integral, 200

W
Weierstrass, Karl, 17
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